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Abstract: This paper presents a novel hybrid navigation approach for autonomous 
mobile robots in obstacle-rich environments. The method integrates artificial potential 
fields for obstacle avoidance with fuzzy logic for path planning, which is optimized by a 
genetic algorithm to enhance adaptability and robustness to sensor uncertainties. 
Experimental results demonstrate significant improvements over traditional artificial 
potential field methods and are validated through real-time implementation on a ROS-
based mobile robot. 

Keywords: Autonomous Mobile Robot, Fuzzy Logic System Optimization, Hybrid 
Approach, Path Planning 

 

1  Introduction 

RIVEN by advancements in robotics and intelligent 
algorithms in recent years, path planning has 

emerged as a critical area of research within the field of 
autonomous robot control technology. Path planning can 
be categorized into two main problem types: local path 
planning and global path planning. Local path planning 
addresses scenarios where environmental information is 
partially unknown or incomplete. Conversely, global 
path planning assumes complete knowledge of the 
operating environment. Path planning methodologies can 
be broadly categorized into traditional and reactive 
approaches. 

Traditional methods: These methods typically focus on 
finding optimal paths based on pre-defined criteria. 
Examples include cell decomposition [1-4], roadmap [5-
8], and artificial potential field (APF) approaches [9-12]. 

Reactive methods: These methods are well-suited for 
environments with frequent changes and can leverage 
real-time data for decision-making. Examples include 
genetic algorithms (GA) [13-16], fuzzy logic [9, 17-20], 
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neural networks [21-26], firefly algorithms [27, 28], ant 
colony optimization [29-32], cuckoo search [33-35], and 
others [36].  

The APF method is a popular approach among 
traditional methods. Compared to other traditional path 
planning techniques, APF offers advantages in terms of 
its user-friendliness, low computational burden, and 
straightforward implementation. The APF method 
suffers from a well-documented limitation: convergence 
to local minima. Local minima traps may lead to 
situations where the target becomes unreachable. This 
occurs when the resultant force acting on the agent 
cancels out (zero resultant force). The complex 
geometries and relative positions of obstacles within the 
environment significantly contribute to this issue. 
Numerous researchers have addressed the challenge of 
path planning for autonomous mobile agents. Notably, 
Jia et al.[37] modified the repulsive potential function by 
discretizing obstacle outlines to enable more nuanced 
navigation; however, this approach may not fully resolve 
local minima in highly cluttered or complex settings. 
Additionally, Li et al. [38] developed an improved APF-
based regression search method tailored for fully known 
environments, limiting its applicability to scenarios with 
incomplete or changing environmental data. Orozco-
Rosas et al. [39] integrated membrane computing with 
APF, using GA to optimize parameters and generate 
feasible paths, but this method may incur high 
computational costs, making it less suitable for real-time 
applications. Rizqi et al. [40] proposed a potential 
function-based approach for quadrotors, incorporating 
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wall-following behavior to escape local minima; while 
effective for quadrotors, this strategy may not suit other 
robots. 

Building on these efforts, this paper introduces a novel 
hybrid approach that addresses the limitations of 
traditional APF methods by integrating fuzzy logic 
control—a reactive technique—into the APF framework. 
Unlike prior studies, our method uses fuzzy logic to 
dynamically adjust the robot’s heading angle, enhancing 
its ability to escape local minima traps and navigate 
complex environments more effectively. Additionally, 
we employ genetic algorithms (GA) as a machine 
learning technique to optimize the fuzzy logic system’s 
parameters, improving its adaptability to diverse 
environments and robustness against imprecise sensor 
data. This combination of fuzzy logic and GA within the 
APF framework distinguishes our approach from 
existing methods, offering a balance of computational 
efficiency, real-time adaptability, and generalizability 
across robot types. 

This work focuses on path planning for a single robot 
navigating toward a single target in an environment rich 
in obstacles. Our contributions are threefold: 

 

• A hybrid path planning method that synergizes 
APF with fuzzy logic control to overcome local 
minima and improve navigation performance. 

 

• Optimization of the fuzzy logic system using 
GA, enhancing its effectiveness and 
adaptability in varied scenarios. 

 

• Validation through simulations and 
implementation on a ROS-based 
omnidirectional differential drive mobile robot, 
demonstrating superior performance compared 
to conventional APF algorithms. 
 
 

The remainder of this paper is organized as follows: 
Section 2 introduces the basic concept of the APF 
method. Section 3 defines the Fuzzy-Based Force 
Control for Improved Performance in APF Path 
Planning and then presents the GA to optimize the FIS 
rule base and parameters. Section 4 presents simulation 
and implementation results, which demonstrate the 
effectiveness of the proposed algorithm. Finally, Section 
5 summarizes this paper. 

2 Artificial Potential Field  

This section introduces the Artificial Potential Field 
(APF) method, as shown in Fig. 1. The APF method 

uses two main components: an attractive field and a 
repulsive field. The attractive field, originating from the 
target, pulls the object towards its goal. Conversely, 
repulsive fields from obstacles push the object away, 
preventing collisions. The object's overall force is the 
sum of these attractive and repulsive forces. This 
combined force guides the object's path. Following 
sections will explore how these attractive and repulsive 
fields are specifically created. 

 

 
Fig 1.Attractive and repulsive force [41]. 

2.1 Attractive potential functions 
For robot navigation, an attractive field guides the 

robot to its target. This field's strength increases with the 
distance between the robot and the target. Common 
attractive potential functions include conic and quadratic 
forms [42]. However, the conic function can cause 
abrupt changes in target positioning during calculations, 
requiring careful handling of the zero point. Therefore, 
the quadratic potential function is generally preferred, as 
detailed below [43] : 

 

 

𝑈𝑈att (𝑞𝑞) = �
1
2
𝜉𝜉𝜎𝜎2�𝑞𝑞, 𝑞𝑞target �,𝜎𝜎�𝑞𝑞, 𝑞𝑞target � ≤ 𝜎𝜎0

𝜉𝜉𝜎𝜎�𝑞𝑞, 𝑞𝑞target �𝜎𝜎0 −
1
2
𝜉𝜉𝜎𝜎02,𝜎𝜎�𝑞𝑞, 𝑞𝑞target � > 𝜎𝜎0

     (1) 

 

Where 𝑈𝑈att (𝑞𝑞) is the numerical value of the attractive 
field; and 𝜉𝜉  is the attractive gain constant, which is a 
positive parameter. 𝑞𝑞target = �𝑥𝑥target ,𝑦𝑦target �

𝑇𝑇
  is the 

position of the target, 𝑞𝑞 = (𝑥𝑥,𝑦𝑦)𝑇𝑇 is the current position 
of the robot, and 𝜎𝜎�𝑞𝑞, 𝑞𝑞target � = ∥∥𝑞𝑞 − 𝑞𝑞target ∥∥2represents 
the Euclidean distance between the robot and the target. 
We define 𝜎𝜎0  as distance threshold that determines the 
attractive force exerted by the target on the robot. This 
attractive force is directly related to the robot's position 
and is calculated as the negative gradient of the target's 
attractive potential function: 
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�⃗�𝐹att (𝑞𝑞) = −∇𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) =

�
−𝜉𝜉�𝑞𝑞 − 𝑞𝑞target �,     𝜎𝜎�𝑞𝑞, 𝑞𝑞target � ≤ 𝜎𝜎0

− 𝜉𝜉𝜎𝜎0�𝑞𝑞−𝑞𝑞target �
𝜎𝜎�𝑞𝑞,𝑞𝑞target �

,     𝜎𝜎�𝑞𝑞, 𝑞𝑞target � > 𝜎𝜎0
                      (2) 

 

To design the attractive field, a distance threshold, 𝜎𝜎0, is 
used to adjust the force on the robot depending on its 
distance to the target. If the robot is closer than 𝜎𝜎0, a 
stronger attractive force is applied, inversely 
proportional to the distance. If the distance, d, is greater 
than 𝜎𝜎0, the attractive force decreases with distance, 
following an inverse square law. This threshold helps 
prevent collisions caused by overly strong attractive 
forces at long distances. The following section 
introduces the repulsive potential function, a key 
component of the APF method that ensures obstacle 
avoidance while maintaining path stability. 

2.2 Repulsive potential function 
A repulsive force field helps guide a robot and prevent 

collisions. This field pushes the robot away from 
obstacles with a force that increases as the robot gets 
closer. It's important that this repulsive force only acts 
within a safe distance. Beyond a certain threshold, the 
force should be negligible, allowing the robot to move 
freely when it's sufficiently far from obstacles. Different 
control algorithms use different functions to calculate 
the repulsive force. An example function is given in 
[43]. 

 

𝑈𝑈repi (𝑞𝑞) = �
1
2
𝜂𝜂 � 1

𝜌𝜌𝑖𝑖(𝑞𝑞,𝑞𝑞obst )
− 1

𝜌𝜌0
�
2

, 𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎) ≤ 𝜌𝜌0
0, 𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎) > 𝜌𝜌0

     (3) 

 

Given an environment with n obstacles, the total 
repulsive potential field can be expressed 
mathematically as: 

 

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞) = � 
𝑛𝑛

𝑖𝑖=1

𝑈𝑈repi (𝑞𝑞)                                                         (4) 

 

Let represent the repulsive potential field generated by 
obstacle 𝑖𝑖. The parameter  𝜂𝜂 denotes the repulsion gain 
constant, which is a strictly positive value. 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎 =
(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎 ,𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎)𝑇𝑇 represents the position on the obstacle's 
surface closest to the robot. The current position of the 
robot is denoted by 𝑞𝑞 = (𝑥𝑥,𝑦𝑦)𝑇𝑇. The distance between 
the robot and the closest point on obstacle i is given by 
𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎) = ∥∥𝑞𝑞 − 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎∥∥2. The obstacle's radius of 

influence is denoted by 𝜌𝜌0.  Therefore, the repulsive 
force exerted by obstacle i on the robot can be expressed 
as the negative gradient of the repulsive potential 
function: 

 

𝐹𝐹repi (𝑞𝑞)���������������⃗ = −∇𝑈𝑈repi (𝑞𝑞)

= �
𝜂𝜂 �

1
𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞obst )

−
1
𝜌𝜌0
�

1
𝜌𝜌𝑖𝑖2(𝑞𝑞, 𝑞𝑞obst )

𝑞𝑞 − 𝑞𝑞obst 

𝜌𝜌𝑖𝑖(𝑞𝑞,𝑞𝑞obst )
, 𝜌𝜌𝑖𝑖(𝑞𝑞,𝑞𝑞obst ) ≤ 𝜌𝜌0

0, 𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞obst ) > 𝜌𝜌0   (5)

 

 

The repulsive field defines a distance threshold  𝜌𝜌0 
between the robot and obstacles. As the robot 
approaches an obstacle, the repulsive force increases 
sharply according to the gradient of this threshold. When 
the robot’s distance from the obstacle drops below  𝜌𝜌0, 
the repulsive force strengthens significantly. Conversely, 
once the robot moves beyond  𝜌𝜌0, the repulsive force 
diminishes, becoming negligible. The next section 
introduces the total potential function. 

2.3 Total potential function 
The total potential function, 𝑈𝑈(𝑞𝑞), was determined by 

summing the individually calculated attractive potential 
function, 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞), and repulsive potential function, 
𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑞𝑞). 

𝑈𝑈(𝑞𝑞) = 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) + � 
𝑛𝑛

𝑖𝑖=1

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑞𝑞)                                   (6) 

In consequence, the resultant force can be 
mathematically represented as: 

�⃗�𝐹(𝑞𝑞) = �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) + � 
𝑛𝑛

𝑖𝑖=1

�⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑞𝑞)                                   (7) 

  In the next section, we discuss the limitations of the 
traditional APF method, highlighting its key 
shortcomings. 

2.4 Identifying Limitations in the Traditional APF 
Method 

The APF method is computationally efficient, 
responsive, and easy to implement, but it faces 
challenges in specific path-planning scenarios where 
targets become unreachable. A target is deemed 
unreachable when a robot cannot approach it and instead 
drifts farther away. This issue frequently occurs in 
environments with obstacles near the target. As the robot 
moves toward the goal, nearby obstacles amplify 
repulsive forces, destabilizing path planning. 

This phenomenon arises from a diminishing �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎 
towards the target and a concurrently escalating �⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 
due to obstacles. When �⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 > �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎 , the resultant force 
compels the robot away from the target, rendering it 
inaccessible. 
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Local optimization and local stability occur when the 
combined attractive and repulsive forces acting on the 
robot equate to zero or are collinearly. Under these 
conditions, the robot becomes stationary or oscillates 
within a localized area, unable to escape this force 
equilibrium. 

Two case studies are presented based on the 
configurations illustrated in Fig. 2 and Fig. 3. 

Case 1: When the robot, target, and obstacle are 
aligned (Fig. 2), the robot is subjected to an attractive 
force, propelling it towards the target. As the robot 
approaches the obstacle, the attractive force diminishes 
while the repulsive force increases. If these forces 
equilibrate, the robot becomes stationary. Conversely, if 
the attractive force dominates, the robot advances until 
the repulsive force again counterbalances it, resulting in 
oscillatory motion near the obstacle. 

 

 
Fig 2.Forces acting on the robot in case 1 

 
Case 2: In environments with multiple obstacles and 

non-aligned paths (Figure 3), the robot may move 
unpredictably. Moreover, when repulsive forces from 
obstacles balance the attractive force toward the target, 
the robot becomes stuck, unable to progress.  

 
Fig 3.Forces acting on the robot in case 2 

3 Fuzzy-Based Force Control for Improved 
Performance in APF Path Planning 

Building upon the established objective of navigation, 
which is to reach a designated target while avoiding 
obstacles. We define two key vectors, as is typical in 
APF algorithms. In Fig. 4 the attractive force vector �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎 
is defined as a unit vector pointing directly from the 

robot's current position toward the target. Conversely, 
the repulsive force vector �⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 is a unit vector 
originating from the closest obstacle in the environment 
and pointing toward the robot. 

 
Fig 4.Force analysis 

We propose Eq. (8) as an alternative to Eq. (1) and Eq. 
(2) for achieving a more smoothly and safely navigation 
towards the target. In Eq. (8), �⃗�𝐹𝑤𝑤  represents the resultant 
force, 𝜃𝜃 denotes the direction of the resultant force 
vector, and 𝑤𝑤 represents the weight of the force vector. 

�⃗�𝐹𝑤𝑤  =  𝑤𝑤�⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + (1 − 𝑤𝑤)�⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎  , 0 < 𝑤𝑤 < 1                  (8) 
𝜃𝜃 = ∡ 𝐹𝐹                                                                          

 

Certain mobile robot locomotion models may be 
constrained to avoid sharp turns. To achieve this 
limitation, the maximum angular displacement per 
control cycle is restricted to − 𝜋𝜋

4
< 𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚 < 𝜋𝜋

4
 

Consequently, the robot's heading direction at the next 
time step, denoted as 𝜃𝜃𝑟𝑟(𝑘𝑘+1), is calculated based on the 
current heading direction, 𝜃𝜃𝑟𝑟(𝑘𝑘), using the Eq. (9): 

 

𝜃𝜃𝑟𝑟(𝑘𝑘 + 1)

= 𝜃𝜃𝑟𝑟(𝑘𝑘) + �
𝑚𝑚𝑖𝑖𝑚𝑚 �𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘),

𝜋𝜋
4
�     ,𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘) >  0 

𝑚𝑚𝑚𝑚𝑥𝑥 �𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘),−
𝜋𝜋
4
�   ,𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘) < 0

(9) 

 

�⃗�𝐹𝑤𝑤  is the resultant force and the magnitude 𝑤𝑤 of the 
force vector is determined using the Eq. (10): 

 

𝑤𝑤 = 𝐹𝐹𝑤𝑤(𝛼𝛼, |𝛥𝛥𝜃𝜃|)                                                     (10) 

 

where: 

|𝛥𝛥𝜃𝜃| (delta theta): absolute difference between the 
target and obstacle directions with respect to the robot 
(Fig. 4).  
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𝛼𝛼 (alpha): ratio of the robot-to-obstacle distance, 
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑟𝑟  and the robot-to-target distance, 𝑑𝑑target.  

To successfully navigate, the function should prioritize 
obstacle avoidance by generating high output values 
when the following conditions are met: 

Angular Difference is Minimal: The absolute value of 
the difference between the target and obstacle directions 
relative to the robot |𝛥𝛥𝜃𝜃| is low. This indicates that the 
target and obstacle lie in similar directions from the 
robot's perspective. 

Obstacle Proximity: The distance between the robot 
and the obstacle 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑟𝑟  is lower than the distance 
between the robot and the target 𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑎𝑎. This signifies 
that the obstacle poses a more immediate threat. 

Under these circumstances, high output values from 
the function will guide the robot's movement to prioritize 
obstacle avoidance. Conversely, the function should 
generate low output values when the aforementioned 
conditions are not met. This signifies that the robot 
should focus on reaching the target. 

This study aims to develop a Fuzzy Inference System 
(FIS) capable of autonomously acquiring fuzzy rules and 
optimizing its internal parameters. This optimized FIS 
will then be employed to model the function responsible 
for collision-free robot navigation within a specified 
environment. 

To model the function 𝐹𝐹𝑤𝑤  in Eq. (10), a FIS is 
constructed as depicted in Fig. 5. In this instance, a 
Mamdani FIS is employed. 

 
Fig 5.Mamdani Fuzzy Inference System (FIS) Architecture for 
determining the weighting factor �⃗�𝐹𝑤𝑤. The FIS takes two inputs, 
Angular Difference (∆𝜃𝜃) and Relative Distance Ratio (𝛼𝛼), and 

outputs the weight 𝑤𝑤. 

The employed fuzzy system utilizes two input 
variables. The first input variable, denoted by ∆θ, 
represents the absolute difference between the target 
direction and the direction of the nearest obstacle 

relative to the robot's orientation. The second input 
variable α, is ratio of the robot-to-obstacle distance and 
the robot-to-target distance.  

The range of the first input variable is set to [0,𝜋𝜋/2]. 
This implies that the second fuzzy input, potentially 
representing the difference between target and obstacle 
directions, influences obstacle avoidance when this 
difference is less than or equal to 𝜋𝜋/2 radians. 

Similarly, the range of the second input variable is 
defined as [0, 2]. This signifies that the fuzzy input, 
likely representing obstacle distance, contributes to 
obstacle avoidance behavior when the obstacle is located 
at a distance less than or equal to twice the target 
distance. 

To minimize the number of fuzzy rules, a strategy 
employing two membership functions (MFs) per input 
variable is implemented. This approach directly reduces 
the number of combinations required compared to 
traditional methods. Furthermore, to accommodate input 
values beyond the designated ranges, a combination of 
Z-shaped and S-shaped curve MFs is utilized for 
providing smooth and continuous transition, which is 
essential for capturing the gradual changes in input data. 
These functions ensure appropriate membership value 
assignment even for outlying data points. The first input 
variable is assigned MFs, as detailed in Fig. 6. 

 
Fig 6.Membership Functions for the Input Variable ∆𝜃𝜃 defined 

using Z-shaped and S-shaped curves for smooth and 
continuous transition, respectively 

And the second input variable is assigned membership 
functions, as detailed in Fig. 7. 

To achieve finer granularity in the output values, two 
MFs can be added to the output layer. While additional 
MFs can be employed for even greater granularity, this 
approach necessitates the optimization of a larger set of 
tuning parameters. 
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Fig 7.Membership Functions for the Input Variable α (Relative 
Distance Ratio). Two membership functions are used:” Close 
Obstacle” and” Far Obstacle,” defined using Z-shaped and S-

shaped curves for smooth and continuous transition, 
respectively. 

Fig. 8 illustrates the addition of two MFs to the system's 
output. While including more MFs can refine the 
granularity of output values, it also leads to an increase 
in the number of parameters requiring tuning. Notably, 
the output MFs utilize Z-shaped and S-shaped curve to 
extend membership values beyond the defined input 
ranges. The tuning process subsequently optimizes the 
parameter values associated with these output MFs. 
 

 
Fig 8.Output Membership Functions for the Weighting Factor 
w. Two membership functions are used:” Low Weight” and” 

High Weight,” defined using Z-shaped and S-shaped curves for 
smooth and continuous transition, respectively. 

3.1 FIS Rule base Learning and Parameter 
Optimization 

A key challenge in deploying Fuzzy Inference Systems 
(FIS) is the design and tuning of their rule base and 
membership function parameters. Typically, this process 
relies on expert knowledge or extensive trial-and-error. 

However, for complex systems like robot navigation in 
dynamic environments, manually crafting optimal fuzzy 
rules and parameters can be exceedingly difficult and 
time-consuming. Furthermore, in many real-world 
applications, labeled training data for FIS design is often 
scarce or unavailable. To address these challenges and 
enable automated FIS design and optimization, we 
employ a Genetic Algorithm (GA)-based learning 
approach. In the absence of explicit input-output training 
data, our GA leverages a custom-designed reward 
function to evaluate and guide the evolution of candidate 
FIS configurations. This reward function acts as a 
surrogate for expert knowledge, encoding the desired 
robot navigation behavior and allowing the GA to 
autonomously discover effective FIS parameters. The 
general process of FIS parameter setup with reward 
function definition is illustrated in Fig. 9. 

Our GA-based optimization process focuses on tuning 
the rule base and membership function parameters of 
both the input and output variables of the FIS. 

 
Fig 9.Genetic Algorithm-based Fuzzy Inference System (FIS) 

Parameter Optimization Process. The GA as optimizer 
iteratively generates and evaluates candidate FIS parameter 

sets using a custom-designed reward function based on 
simulated robot navigation performance. The best-performing 

FIS configurations are selected and evolved over generations to 
find an optimized FIS. 

Specifically, the GA evolves the parameters that define 
the shapes and positions of the Z-shaped and S-shaped 
membership functions shown in Fig. 6, Fig. 7, and Fig. 
8. The GA’s primary task is to optimize the rule base 
and numerical parameters of the membership functions 
so that the fuzzy logic achieves robust robot navigation. 
The reward function, 𝑅𝑅, is crucial for guiding the GA’s 
search. It is designed to quantitatively assess the 
navigation performance of a robot controlled by a given 
FIS configuration across multiple simulated training 
environments. These training environments are designed 
to represent a range of typical navigation scenarios, 
featuring different obstacle arrangements and target 
locations. The reward function aggregates the 
performance across these environments to provide a 
holistic evaluation of each candidate FIS. For each 
training environment 𝑖𝑖, the reward 𝑅𝑅𝑖𝑖 is calculated based 
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on the robot’s navigation outcome. We define a positive 
reward for successful navigation and a negative reward 
(penalty) for failures. Successful navigation is defined as 
reaching the target without colliding with any obstacle or 
going out of bounds. In this case, the reward is set to the 
total distance traveled by the robot. We aim to minimize 
path length while achieving successful navigation, thus 
rewarding efficiency. Failed navigation, on the other 
hand, occurs if the robot collides with an obstacle or 
fails to reach the target within a reasonable time frame or 
distance. In case of failure, a fixed penalty of −100 is 
assigned. This penalty is chosen to be significantly 
negative to discourage failure modes and prioritize 
successful navigation in the GA’s optimization process. 
Mathematically, for each training environment 𝑖𝑖, the 
reward 𝑅𝑅𝑖𝑖 is defined as: 

The reward for the 𝑖𝑖-th environment, 𝑅𝑅𝑖𝑖, is defined as: 
𝑅𝑅𝑖𝑖
= �

travelledDistance𝑖𝑖, if reachedTarget𝑖𝑖 = true and notSafe𝑖𝑖 = false,
−100, otherwise.                            

 

           (11) 

The total reward 𝑅𝑅 across all 𝑚𝑚 environments is the 
sum of individual rewards: 

𝑅𝑅 = ∑ 𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1 .                                                                (12) 

The reward function can be expressed as: 

𝑅𝑅 = ∑ �travelledDistance𝑖𝑖 ⋅ 𝕀𝕀reachedTarget𝑖𝑖∧¬notSafe𝑖𝑖
−𝑛𝑛

𝑖𝑖=1

100 ⋅
𝕀𝕀¬reachedTarget𝑖𝑖∨notSafe𝑖𝑖

�.                                                      (13) 

where 𝕀𝕀condition is an indicator function that returns 1 if 
the condition is true and 0 otherwise, ∧ denotes the 
logical and operator, and ∨ denotes the logical OR 
operator. 

The indicator functions are defined as follows: 
𝕀𝕀reachedTarget𝑖𝑖∧¬notSafe𝑖𝑖

 is 1 if the robot successfully 
reaches the target without collisions, and 0 otherwise; 
𝕀𝕀¬reachedTarget𝑖𝑖∨notSafe𝑖𝑖

 is 1 if the robot fails to reach the 
target or encounters a collision, and 0 otherwise. If the 
robot successfully navigates to the target, the reward is 
the traveled distance travelled Distance𝑖𝑖 . If the robot 
fails (due to collision or not reaching the target), the 
reward is the fixed penalty 100. The total reward 𝑅𝑅 is 
the sum of rewards across all environments. 

The objective of the Genetic Algorithm is to maximize 
this total reward function 𝑅𝑅 over generations by 
iteratively refining the membership function parameters 
of the FIS. Algorithm. 1 outlines the steps of our GA-
based FIS tuning process. 

 

 

Algorithm. 1 Genetic Algorithm for Tuning Fuzzy Inference 
System (FIS) Parameters for Robot Navigation. 

Step 1: Define the Desired Navigation Behavior  

• Specify the desired navigation behavior, here: 
Obstacle Avoidance with Goal Reaching:  

Step 2: Design the Custom Reward Function 

• Develop a reward function 𝑅𝑅 that quantifies the 
robot’s performance. The reward function can 
be expressed as Eq. 11: 

𝑅𝑅 = ��travelledDistance𝑖𝑖 ⋅ 𝕀𝕀reachedTarget𝑖𝑖∧¬notSafe𝑖𝑖 − 100
𝑛𝑛

𝑖𝑖=1

⋅ 𝕀𝕀¬reachedTarget𝑖𝑖∨notSafe𝑖𝑖� 

Step 3: Select and Configure the Optimization 
Algorithm   

• Choose an optimization algorithm suitable 
for tuning the Fuzzy Inference System 
(FIS) parameters, such as: Genetic 
Algorithm (GA).  

• Define the parameters to be tuned, 
including: Membership function 
parameters (e.g., shapes, centers, widths). 
Rule weights (if applicable).  

• Configure the optimization algorithm 
parameters (e.g., population size, number 
of iterations, mutation rate for GA). 

Step 4: Evaluate Candidate FIS Configurations in 
Simulation  

• Utilize a robot simulator to evaluate candidate 
FIS configurations efficiently and safely.  

Step 5: Crossover 

• Create new FIS configurations (offspring) by 
applying crossover operations to pairs of 
selected parent configurations. Crossover 
combines parameter sets from parents to 
explore new regions of the parameter space. 

        For each candidate FIS parameter set:  

• Initialize the robot’s state (position and 
orientation) in the simulation.  

• Run the simulation under the control of the 
candidate FIS for a defined duration or until 
task completion.  

• Collect relevant data during the simulation, 
such as: Trajectory, errors, control signals, and 
obstacle distances. Calculate the reward value 𝑅𝑅 
using the reward function based on the 
collected data. 

Step 6: Iterate and Converge: 

• The optimization algorithm iteratively refines 
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the FIS parameters based on the reward values 
obtained in Step 4. GA algorithm explores the 
parameter space and maximize the reward 
function 𝑅𝑅.  

• Continue the iteration until: A satisfactory FIS 
performance is achieved (i.e., the reward 
function 𝑅𝑅 is maximized). The maximum 
number of iterations is reached. 

Step 7: Output 

• Output the best-performing FIS configuration 
found during the GA optimization process, 
representing the tuned Fuzzy Logic Controller 
for robot navigation. 

 

The FIS learning algorithm adjusts the rule parameters 
based on the reward function, resulting in enhanced 
generalization capabilities. A 1 × 5 fuzzy rule base is 
created, with each rule containing a textual description 
summarizing the antecedent and consequent, the IF part 
of the rule (a combination of fuzzy propositions using 
linguistic variables and fuzzy operators), the THEN part 
of the rule (specifying the resulting fuzzy output), and a 
numerical weight associated with the rule (often set to 1) 
that influences its overall contribution. Details of the 
fuzzy rule base are presented in Table. 1. 

Table 1. Rules for the FIS 
Rule 

Number Description Antecedent Consequent Weight 

1 

Low alpha and 
high delta theta 

implies low 
weight 

alpha is LOW 
AND delta theta 

is HIGH 

w is LOW 
(weight = 1) 1 

2 

Low alpha and 
low delta theta 
implies high 

weight 

alpha is LOW 
AND delta theta 

is LOW 

w is HIGH 
(weight = 1) 1 

3 
High delta theta 

implies low 
weight 

delta theta is 
HIGH 

w is LOW 
(weight = 1) 1 

4 

High alpha and 
high delta theta 

implies low 
weight 

alpha is HIGH 
AND delta theta 

is HIGH 

w is LOW 
(weight = 1) 1 

5 Low alpha implies 
low weight alpha is LOW w is LOW 

(weight = 1) 1 

 

3.2 Rules Reduction 
To facilitate rule reduction and enhance the FIS's 

efficiency, we provide a detailed description of the FIS 
rules in Table 1, emphasizing their connection to the 
anticipated behaviors of  𝐹𝐹𝑤𝑤 represented in Eq. (10). The 
FIS employs five initial rules to evaluate the significance 
of obstacles during robot navigation. We now analyze 
the relationships between these rules and their impact on 
the overall behavior to justify the rule reduction. 

Rules 1 and 4: Rules 1 and 4 both contribute to 
assigning a low significance weight to obstacles when 
they are not directly in the robot's path towards the 
target, characterized by a high antecedent value for 
"obstacle location" (𝛥𝛥𝜃𝜃 is HIGH). Specifically, Rule 1 
considers scenarios where such off-path obstacles are 
also relatively close (low "obstacle distance" or 𝛼𝛼 is 
LOW), while Rule 4 addresses cases where they are 
further away (high "obstacle distance" or 𝛼𝛼 is HIGH). 
Since Rule 3 also assigns a low weight based solely on 
"obstacle location" being high (obstacle not in front), 
potentially encompassing the conditions of Rules 1 and 
4, one might initially deem Rules 1 and 4 redundant. 
However, a more nuanced perspective acknowledges 
potential edge cases. For instance, in highly cluttered 
environments, closer off-path obstacles might arguably 
warrant slightly more consideration than distant ones, 
and Rules 1 and 4 could theoretically offer this finer 
granularity. 

Despite these potential edge cases, we justify the 
removal of Rules 1 and 4 based on the following 
considerations: The primary factor determining obstacle 
weight should be whether the obstacle is in the robot's 
direct path 𝛥𝛥𝜃𝜃 being "HIGH" strongly indicates the 
obstacle is not an immediate threat to the robot's forward 
progress, making the influence of obstacle distance 𝛼𝛼 
secondary in these off-path scenarios. Furthermore, 
retaining Rules 1 and 4 introduces unnecessary 
complexity to the FIS without a demonstrably significant 
improvement in core navigation performance, especially 
considering our objectives of robust obstacle avoidance 
and escaping local minima. The simplified FIS with 
fewer rules is computationally more efficient and easier 
to interpret. Empirical validation, as presented in the 
Experimental Evaluation and Results section, supports 
the effectiveness of the reduced rule set, indicating that 
the simplification is justified in practice. Therefore, 
while acknowledging the subtle nuances Rules 1 and 4 
could provide, their removal for simplification and 
efficiency is well-founded. 

 

Rule 5: Rule 5 is designed to assign a low weight to 
obstacles that are in close proximity to the robot 
("obstacle distance" or 𝛼𝛼 is LOW). However, this rule 
presents a potential conflict with Rule 2, which assigns a 
high weight to nearby obstacles that are also positioned 
directly in the robot's path ("obstacle distance" is LOW 
AND "obstacle location" or 𝛥𝛥𝜃𝜃 is LOW). In edge cases 
where an obstacle is very close but perhaps not perfectly 
aligned with the robot's intended direction, both Rule 2 
and Rule 5 could technically become active. While Rule 
5 might subtly reduce the overall weight in such 
borderline situations, the "high weight" output from Rule 
2, designed to trigger a strong avoidance response for 
immediate threats, would inherently dominate the final 
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FIS output. Therefore, the contribution of Rule 5 
becomes inconsequential in practice. Consequently, Rule 
5 can also be removed without significantly altering the 
overall behavior, as the dominant Rule 2 effectively 
addresses scenarios where nearby obstacles pose a direct 
threat. To achieve a more concise representation and 
improve computational efficiency, we eliminated these 
redundant rules. The modified FIS rules are detailed in 
Table 2. 

Table 2. Modified rules for the FIS 

Rule 
Number Description Antecedent Consequent 

1 Low alpha and low 
delta theta  

alpha is low & delta 
theta is low 

w is high 
(weight is 1) 

2 High delta theta delta theta is high w is low 
(weight is 1) 

 The modified output surface of the FIS is depicted in 
Fig. 10. To further assess the practicality of our 
approach, the next section provides a comprehensive 
analysis of its computational complexity. 

 
Fig 10. Control surface of modifies FIS 

3.3 Computational Complexity Analysis  
The practicality of a navigation algorithm for mobile 

robots is significantly influenced by its computational 
demands, particularly for real-time applications. To 
strengthen the argument for the feasibility of our 
proposed method, this section provides a detailed 
analysis of its computational complexity, differentiating 
between offline and online phases and comparing it with 
relevant alternative approaches.  

 Offline Phase: Genetic Algorithm Optimization Our 
framework employs a Genetic Algorithm (GA) to 
optimize the Fuzzy Logic Controller's (FLC's) 
membership functions and rule base. It is crucial to 
acknowledge that GA optimization is inherently 
computationally intensive. However, this computational 
burden is strategically confined to an offline design 
phase. The computational complexity of the GA 
optimization phase can be approximated as: 

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑖𝑖𝐶𝐶𝑦𝑦_𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝑖𝑖𝑚𝑚𝐶𝐶 =  𝑂𝑂(𝑃𝑃 .𝐺𝐺 .𝐶𝐶𝑓𝑓)        (14) 
 
where: 
 𝑃𝑃 is the population size of the GA, representing the 
number of candidate solutions evaluated in each 
generation. 𝐺𝐺 is the number of generations, indicating 
the iterative process of evolution and refinement of 
solutions. 𝐶𝐶𝑓𝑓 represents the computational cost of 
evaluating the fitness or reward function for each 
candidate solution. This cost primarily involves 
simulating the controller's performance within a 
representative environment. This is because the outcome 
of this phase is a pre-optimized FLC that is subsequently 
deployed in a real-time environment where online 
computational efficiency is paramount. The offline 
optimization allows for a more thorough exploration of 
the design space, leading to a potentially more robust 
and effective controller without burdening the robot's 
real-time processing capabilities.  

Online Phase: Real-Time FLC Execution The online 
operation of the Fuzzy Logic Controller, which is 
executed in real-time on the mobile robot, is designed 
for computational efficiency. The online phase 
comprises a well-defined sequence of steps: 
 1. Fuzzification: This step involves converting crisp 
sensor inputs (e.g., distance measurements) into fuzzy 
linguistic variables based on predefined membership 
functions. The computational cost of fuzzification is 
typically linear with respect to the number of inputs and 
membership functions, which are usually small and fixed 
2. Rule Evaluation (Inference): The core of the FLC's 
online computation lies in rule evaluation. Given a finite 
and fixed set of fuzzy rules (in our case, a reduced set as 
shown in Table 2), the inference engine determines the 
degree to which each rule's antecedent is satisfied by the 
fuzzified inputs. With 𝑚𝑚 representing the number of 
fuzzy rules, and assuming a fixed number of antecedents 
per rule, the complexity of rule evaluation is 
approximately proportional to the number of rules.  
3. Defuzzification: The final step is defuzzification, 
where the fuzzy output values (representing control 
actions) are converted back into precise, crisp control 
commands that can be directly applied to the robot's 
actuators. Common defuzzification methods, such as the 
centroid method, have a computational cost that is also 
relatively low and constant per control cycle. Therefore, 
since the number of fuzzy rules (𝑚𝑚 = 2) in our design is 
deliberately kept small and fixed, the per-cycle 
computational complexity of the online FLC operation 
can be approximated as:  
 
𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑖𝑖𝐶𝐶𝑦𝑦_𝐶𝐶𝑚𝑚𝐶𝐶𝑖𝑖𝑚𝑚𝐶𝐶 =  𝑂𝑂(𝑚𝑚)                                      (15) 
 
This linear complexity with respect to the (small and 
constant) number of rules signifies a very low per-cycle 
computational cost. This characteristic is highly 
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advantageous for real-time execution, especially on 
resource-constrained mobile robot platforms where 
processing power and energy are limited. 

 Comparison with Alternative Methods  
To further contextualize the computational efficiency of 
our proposed method, it is beneficial to compare its 
online complexity with alternative navigation 
approaches, such as Artificial Potential Field (APF) 
variations:  

• Harmonic Artificial Potential Field (HAPF) 
Controller [45]:  
When implemented using standard iterative 
solvers like Gauss-Seidel, HAPF exhibits a 
computational complexity that is often 
approximated as O (n* I), where 𝑚𝑚 is the 
number of discretized grid cells representing 
the environment, and I is the number of 
iterations required for the solver to converge to 
a stable potential field. While advanced 
methods like multigrid solvers can improve this 
complexity to O(n) in many practical scenarios, 
the online computational cost remains 
dependent on the environment discretization 
(𝑚𝑚), which can be substantial for high-
resolution maps.  

• Pseudo-Bacterial Potential Field (PBPF) 
Controller [46]:  
PBPF, as a bio-inspired approach, simulates a 
swarm of B pseudo bacteria (agents) to explore 
and navigate the potential field. For each 
pseudo bacterium, the algorithm typically 
computes the local potential (or gradient) across 
the environment. Assuming that each 
bacterium's evaluation over 𝑚𝑚 potential 
components (e.g., obstacles, goal) is 
independent, the cost per iteration becomes 
𝑂𝑂(𝐵𝐵 .𝑚𝑚). If the algorithm requires T iterations 
(or time steps) to converge toward a satisfactory 
navigation path, the overall worst-case 
computational complexity can be estimated as 
𝑂𝑂(𝑇𝑇 .𝐵𝐵 .𝑚𝑚). This complexity is influenced by 
the number of simulated bacteria (𝐵𝐵), the 
environment complexity (𝑚𝑚), and the 
convergence time (𝑇𝑇), potentially leading to 
higher online computational demands compared 
to our FLC-based approach.  
 

Practical Implications and Advantages  
  The computational complexity analysis highlights 
several practical implications and advantages of our 
proposed hybrid navigation method:  

• Real-Time Efficiency: The online evaluation 
of a fixed and small set of fuzzy rules in our 
FLC ensures quick and reliable performance, 
making it highly suitable for real-time control 

loops in mobile robotics. This efficiency is 
crucial for responsive navigation and obstacle 
avoidance, even on embedded platforms with 
limited computational capacity.  

• Suitability for Resource-Constrained 
Environments:  
By strategically offloading the computationally 
intensive GA optimization to an offline design 
phase, our method becomes particularly well-
suited for mobile robots operating in resource-
constrained environments where processing 
power and energy efficiency are critical design 
considerations.  

• Robustness vs. Complexity Trade-off: While 
alternative online-adaptive methods might offer 
flexibility in complex environments, their 
increased online computational overhead can 
introduce delays and uncertainties in control 
execution. Our approach prioritizes robustness 
in safety-critical tasks by maintaining a 
consistently low and predictable online 
computational demand, ensuring timely 
responses to sensor inputs and environmental 
changes.  

In conclusion, the proposed method strategically 
decouples the computationally intensive GA 
optimization (performed offline) from the lightweight 
real-time fuzzy controller operation. This design choice 
enhances both the practical feasibility and the real-time 
response performance of the navigation system, making 
it a compelling solution for mobile robot navigation, 
especially when compared to alternative methods that 
may impose higher online computational requirements. 

4 Experimental Evaluation and Results  

To rigorously validate the performance of our 
proposed Evolutionary Fuzzy Force Control (EFFC) 
method, we conducted extensive experiments in both 
simulation and real-world environments. Robotics 
simulation software is an invaluable tool for algorithm 
development, enabling rapid prototyping, testing, and 
debugging of robot control strategies in a controlled 
virtual setting before physical deployment. For our 
simulation experiments, we utilized the Robot Operating 
System (ROS) framework in conjunction with the 
Gazebo robot simulator. The simulated robot platform 
was the widely used TurtleBot 3 Burger (TB3), chosen 
for its realistic dynamics and ROS compatibility. 

For the Genetic Algorithm (GA) optimization of the 
Fuzzy Inference System (FIS), we configured a 
population size of 100 individuals to ensure sufficient 
exploration of the parameter search space. The GA was 
run for a maximum of 25 generations, a number 
empirically determined to allow for convergence while 
maintaining computational feasibility. To evaluate the 
fitness of each FIS configuration within the GA, we 
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employed the custom-designed reward function 
(described in Section 3.1) and simulated robot 
navigation in two distinct training environments. Each 
navigation task within the GA fitness evaluation 
consisted of 10 simulation iterations, with the robot 
commanded to move at a constant linear velocity of 0.1 
𝑚𝑚
𝑜𝑜

  . This relatively low linear velocity was chosen to 
mimic typical indoor robot operation scenarios, such as 
navigation in office or residential environments, where 
safety and controlled movements are prioritized. The GA 
optimization process resulted in tuned membership 
functions for both input and output variables of the FIS. 
Fig. 10, Fig. 11, and Fig. 12 visually depict these 
optimized membership functions for the first input (∆𝜃𝜃), 
the second input (𝛼𝛼), and the output (𝑤𝑤), respectively. 
These figures illustrate the refined fuzzy sets learned by 
the GA to effectively map input conditions to the desired 
weighting factor for obstacle avoidance. 

 
Fig 11. The first input membership functions after ending 

tuning process 

 
Fig 12. The second input membership functions after ending 

tuning process. 

 
Fig 13. The output membership functions after ending tuning 

process. 

The training environments were configured with 
specific initial positions for the obstacle, target, and 
robot. In all training environments, the robot's initial 
heading was set to π/4 radians and the target was located 
at (3, 3), as illustrated in Fig. 14. To evaluate the robot's 
navigation capabilities under varying conditions, two 
distinct training tasks were employed. These tasks 
differed solely in the placement of the obstacle, allowing 
the robot to learn navigation strategies for obstacle-
avoidance scenario during its movement towards the 
target location.  

 
Fig 14. Spatial configuration of the robot, obstacle and target 

for training process 

 
Fig 15. Robot's trajectory in the real-world application scenario 

from Fig. 17 
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Fig 16. Control effort signal (angular velocity) in the real-

world application scenario from Fig. 17 

The performance of each FIS in the population is 
evaluated using a reward function that simulates robot 
navigation in training environments. Each navigation 
task is executed for 10 iterations with a constant linear 
velocity of 0.1 m/s for the TB3.  

Following the completion of the training process, Fig. 
14 depicts the robot's trajectory, while Fig. 16 illustrates 
the control effort signal (angular velocity) exerted.  

To evaluate the proposed method under realistic 
conditions, we utilized a physical mobile robot, TB3. 
The TB3 is a commercially available, differential-drive 
mobile robot platform widely used in robotics research 
and education[44].  It is known for its modular design, 
affordability, and compatibility with the ROS. The TB3 
comes in various configurations, with the most common 
being the Burger variant (featuring two omni-directional 
wheels for maneuverability in indoor environments).  It 
is equipped with a suit of sensors for perception, 
including encoders for odometry, an inertial 
measurement unit (IMU) for orientation, and optionally 
integrated depth cameras or LiDAR for obstacle 
detection and mapping.  The TB3's open-source software 
framework and extensive documentation resources make 
it a popular choice for developing and testing algorithms 
in robotics research areas such as navigation, 
Simultaneous Localization and Mapping (SLAM), and 
robot manipulation. To evaluate the proposed algorithm, 
we employed a real environment (Fig. 17) representative 
of typical office or home settings, reflecting real-world 
application scenarios. The robot's trajectory and 
corresponding control-effort signal are visualized in Fig. 
18 and 19, respectively. A supplementary video 
illustrating the test procedure is available online at  
https://aparat.com/v/myvqzu0 . 

 

 
Fig 17.Real mobile robot (TB3) and environment 

 
Fig 18.Robot's trajectory 

 
Fig 19.Control effort signal (angular velocity) 

A comparative analysis of the proposed Evolutionary 
Fuzzy Force Control (EFFC) algorithm with the 
Harmonic Artificial Potential Field (HAPF) [45] and the 
Pseudo-Bacterial Potential Field (PBPF) [46] is 
presented in Table 3 for two environments in Fig. 20. 
The results demonstrate that proposed algorithm exhibits 
superior real-time performance and robust path planning 
capabilities. Ten independent runs were conducted for 
each method in both Environment (a) and Environment 
(b). The resulting data are visualized in Fig. 21 and 22, 
respectively.  

 

https://aparat.com/v/myvqzu0
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(a)  (b)  

Fig 20. Two distinct environments for comparative analysis. 
(a) depicts a non-convex configuration, while (b) illustrates a 

more complex scenario 

 
Fig 21. The results of ten independent runs were obtained for 

each method for environment (a) from Fig. 20 

 

Fig 22. The results of ten independent runs were obtained for 
each method for environment (b) from Fig. 20 

Table 3.The performance of various methods was evaluated 
over 10 independent runs.  

Environments Statistics 

Proposed 
Evolutionary 
Fuzzy Force 

Control 

Harmonic 
Artificial 

Potential Field 

Pseudo-
Bacterial 

Potential Field 

  Time 
(s) 

Length 
(m) 

Time 
(s) 

Length 
(m) 

Time 
(s) 

Length 
(m) 

(a) Average  11.5 2.3 15.5 3.1 13.1 2.6 

(b) Average  12.2 2.4 14.3 2.8 13.5 2.7 

 

5 Conclusion 

In this work, we demonstrated a successful solution for 
mobile robot navigation in obstacle-filled environments. 
The proposed method combines the strengths of multiple 
techniques leverages the strengths of Artificial potential 
fields for real-time obstacle avoidance, Fuzzy logic 
control for efficient path planning, allowing for 
adaptation to imprecise sensor data and Machine 
learning (genetic algorithm) to optimize the fuzzy logic 
system for different environments. 

Experimental results from a comparative analysis 
showed significant improvement over traditional 
potential field methods (HAPF and PBPF). Furthermore, 
real-time implementation on a mobile robot platform 
validated the effectiveness of the approach in practical 
scenarios. This proposed method offers a robust and 
adaptable navigation strategy for mobile robot platforms 
capable of implementing APF, paving the way for its 
wider application in various environments. 

Future work could explore incorporating additional 
navigation subtasks (e.g., wall following) and adapting 
to other robot platforms for complex environments. 
Additionally, Tuning the FIS parameters also requires 
extensive implementation efforts. To expedite this 
process, incorporating human operator decision data as 
training data can be a promising direction for future 
research. 
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