
Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 1

Iranian Journal of Electrical and Electronic Engineering 04. (2025) 3395

Evolutionary Fuzzy Force Control for Effective Mobile
Robot Navigation
 Majid Golkhatab *, Aref Shahmansoorian *(C.A) and Mohsen Davoudi *

Abstract: This paper presents a novel hybrid navigation approach for autonomous
mobile robots in obstacle-rich environments. The method integrates artificial potential
fields for obstacle avoidance with fuzzy logic for path planning, which is optimized by a
genetic algorithm to enhance adaptability and robustness to sensor uncertainties.
Experimental results demonstrate significant improvements over traditional artificial
potential field methods and are validated through real-time implementation on a ROS-
based mobile robot.

Keywords: Autonomous Mobile Robot, Fuzzy Logic System Optimization, Hybrid
Approach, Path Planning

1 Introduction

RIVEN by advancements in robotics and intelligent
algorithms in recent years, path planning has

emerged as a critical area of research within the field of
autonomous robot control technology. Path planning can
be categorized into two main problem types: local path
planning and global path planning. Local path planning
addresses scenarios where environmental information is
partially unknown or incomplete. Conversely, global
path planning assumes complete knowledge of the
operating environment. Path planning methodologies can
be broadly categorized into traditional and reactive
approaches.

Traditional methods: These methods typically focus on
finding optimal paths based on pre-defined criteria.
Examples include cell decomposition [1-4], roadmap [5-
8], and artificial potential field (APF) approaches [9-12].

Reactive methods: These methods are well-suited for
environments with frequent changes and can leverage
real-time data for decision-making. Examples include
genetic algorithms (GA) [13-16], fuzzy logic [9, 17-20],

Iranian Journal of Electrical & Electronic Engineering, 2025.
Paper first received 02 Sep. 2024 and accepted 10 Mar. 2025.
* The authors are with the Department of Electrical Engineering is
part of the Faculty of Technical and Engineering at Imam Khomeini
International University. Qazvin, Iran.
E-mail: ma.golkhatab@edu.ikiu.ac.ir, shahmansoorian@ ikiu.ac.ir,
davoudi@ ikiu.ac.ir.
Corresponding Author: A. Shahmansoorian.

neural networks [21-26], firefly algorithms [27, 28], ant
colony optimization [29-32], cuckoo search [33-35], and
others [36].

The APF method is a popular approach among
traditional methods. Compared to other traditional path
planning techniques, APF offers advantages in terms of
its user-friendliness, low computational burden, and
straightforward implementation. The APF method
suffers from a well-documented limitation: convergence
to local minima. Local minima traps may lead to
situations where the target becomes unreachable. This
occurs when the resultant force acting on the agent
cancels out (zero resultant force). The complex
geometries and relative positions of obstacles within the
environment significantly contribute to this issue.
Numerous researchers have addressed the challenge of
path planning for autonomous mobile agents. Notably,
Jia et al.[37] modified the repulsive potential function by
discretizing obstacle outlines to enable more nuanced
navigation; however, this approach may not fully resolve
local minima in highly cluttered or complex settings.
Additionally, Li et al. [38] developed an improved APF-
based regression search method tailored for fully known
environments, limiting its applicability to scenarios with
incomplete or changing environmental data. Orozco-
Rosas et al. [39] integrated membrane computing with
APF, using GA to optimize parameters and generate
feasible paths, but this method may incur high
computational costs, making it less suitable for real-time
applications. Rizqi et al. [40] proposed a potential
function-based approach for quadrotors, incorporating

D

 2 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

wall-following behavior to escape local minima; while
effective for quadrotors, this strategy may not suit other
robots.

Building on these efforts, this paper introduces a novel
hybrid approach that addresses the limitations of
traditional APF methods by integrating fuzzy logic
control—a reactive technique—into the APF framework.
Unlike prior studies, our method uses fuzzy logic to
dynamically adjust the robot’s heading angle, enhancing
its ability to escape local minima traps and navigate
complex environments more effectively. Additionally,
we employ genetic algorithms (GA) as a machine
learning technique to optimize the fuzzy logic system’s
parameters, improving its adaptability to diverse
environments and robustness against imprecise sensor
data. This combination of fuzzy logic and GA within the
APF framework distinguishes our approach from
existing methods, offering a balance of computational
efficiency, real-time adaptability, and generalizability
across robot types.

This work focuses on path planning for a single robot
navigating toward a single target in an environment rich
in obstacles. Our contributions are threefold:

• A hybrid path planning method that synergizes
APF with fuzzy logic control to overcome local
minima and improve navigation performance.

• Optimization of the fuzzy logic system using
GA, enhancing its effectiveness and
adaptability in varied scenarios.

• Validation through simulations and
implementation on a ROS-based
omnidirectional differential drive mobile robot,
demonstrating superior performance compared
to conventional APF algorithms.

The remainder of this paper is organized as follows:
Section 2 introduces the basic concept of the APF
method. Section 3 defines the Fuzzy-Based Force
Control for Improved Performance in APF Path
Planning and then presents the GA to optimize the FIS
rule base and parameters. Section 4 presents simulation
and implementation results, which demonstrate the
effectiveness of the proposed algorithm. Finally, Section
5 summarizes this paper.

2 Artificial Potential Field

This section introduces the Artificial Potential Field
(APF) method, as shown in Fig. 1. The APF method

uses two main components: an attractive field and a
repulsive field. The attractive field, originating from the
target, pulls the object towards its goal. Conversely,
repulsive fields from obstacles push the object away,
preventing collisions. The object's overall force is the
sum of these attractive and repulsive forces. This
combined force guides the object's path. Following
sections will explore how these attractive and repulsive
fields are specifically created.

Fig 1.Attractive and repulsive force [41].

2.1 Attractive potential functions
For robot navigation, an attractive field guides the

robot to its target. This field's strength increases with the
distance between the robot and the target. Common
attractive potential functions include conic and quadratic
forms [42]. However, the conic function can cause
abrupt changes in target positioning during calculations,
requiring careful handling of the zero point. Therefore,
the quadratic potential function is generally preferred, as
detailed below [43] :

𝑈𝑈att (𝑞𝑞) = �
1
2
𝜉𝜉𝜎𝜎2�𝑞𝑞, 𝑞𝑞target �,𝜎𝜎�𝑞𝑞, 𝑞𝑞target � ≤ 𝜎𝜎0

𝜉𝜉𝜎𝜎�𝑞𝑞, 𝑞𝑞target �𝜎𝜎0 −
1
2
𝜉𝜉𝜎𝜎02,𝜎𝜎�𝑞𝑞, 𝑞𝑞target � > 𝜎𝜎0

 (1)

Where 𝑈𝑈att (𝑞𝑞) is the numerical value of the attractive
field; and 𝜉𝜉 is the attractive gain constant, which is a
positive parameter. 𝑞𝑞target = �𝑥𝑥target ,𝑦𝑦target �

𝑇𝑇
 is the

position of the target, 𝑞𝑞 = (𝑥𝑥,𝑦𝑦)𝑇𝑇 is the current position
of the robot, and 𝜎𝜎�𝑞𝑞, 𝑞𝑞target � = ∥∥𝑞𝑞 − 𝑞𝑞target ∥∥2represents
the Euclidean distance between the robot and the target.
We define 𝜎𝜎0 as distance threshold that determines the
attractive force exerted by the target on the robot. This
attractive force is directly related to the robot's position
and is calculated as the negative gradient of the target's
attractive potential function:

Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 3

�⃗�𝐹att (𝑞𝑞) = −∇𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) =

�
−𝜉𝜉�𝑞𝑞 − 𝑞𝑞target �, 𝜎𝜎�𝑞𝑞, 𝑞𝑞target � ≤ 𝜎𝜎0

− 𝜉𝜉𝜎𝜎0�𝑞𝑞−𝑞𝑞target �
𝜎𝜎�𝑞𝑞,𝑞𝑞target �

, 𝜎𝜎�𝑞𝑞, 𝑞𝑞target � > 𝜎𝜎0
 (2)

To design the attractive field, a distance threshold, 𝜎𝜎0, is
used to adjust the force on the robot depending on its
distance to the target. If the robot is closer than 𝜎𝜎0, a
stronger attractive force is applied, inversely
proportional to the distance. If the distance, d, is greater
than 𝜎𝜎0, the attractive force decreases with distance,
following an inverse square law. This threshold helps
prevent collisions caused by overly strong attractive
forces at long distances. The following section
introduces the repulsive potential function, a key
component of the APF method that ensures obstacle
avoidance while maintaining path stability.

2.2 Repulsive potential function
A repulsive force field helps guide a robot and prevent

collisions. This field pushes the robot away from
obstacles with a force that increases as the robot gets
closer. It's important that this repulsive force only acts
within a safe distance. Beyond a certain threshold, the
force should be negligible, allowing the robot to move
freely when it's sufficiently far from obstacles. Different
control algorithms use different functions to calculate
the repulsive force. An example function is given in
[43].

𝑈𝑈repi (𝑞𝑞) = �
1
2
𝜂𝜂 � 1

𝜌𝜌𝑖𝑖(𝑞𝑞,𝑞𝑞obst)
− 1

𝜌𝜌0
�
2

, 𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎) ≤ 𝜌𝜌0
0, 𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎) > 𝜌𝜌0

 (3)

Given an environment with n obstacles, the total
repulsive potential field can be expressed
mathematically as:

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟(𝑞𝑞) = � 
𝑛𝑛

𝑖𝑖=1

𝑈𝑈repi (𝑞𝑞) (4)

Let represent the repulsive potential field generated by
obstacle 𝑖𝑖. The parameter 𝜂𝜂 denotes the repulsion gain
constant, which is a strictly positive value. 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎 =
(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎 ,𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎)𝑇𝑇 represents the position on the obstacle's
surface closest to the robot. The current position of the
robot is denoted by 𝑞𝑞 = (𝑥𝑥,𝑦𝑦)𝑇𝑇. The distance between
the robot and the closest point on obstacle i is given by
𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎) = ∥∥𝑞𝑞 − 𝑞𝑞𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎∥∥2. The obstacle's radius of

influence is denoted by 𝜌𝜌0. Therefore, the repulsive
force exerted by obstacle i on the robot can be expressed
as the negative gradient of the repulsive potential
function:

𝐹𝐹repi (𝑞𝑞)���������������⃗ = −∇𝑈𝑈repi (𝑞𝑞)

= �
𝜂𝜂 �

1
𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞obst)

−
1
𝜌𝜌0
�

1
𝜌𝜌𝑖𝑖2(𝑞𝑞, 𝑞𝑞obst)

𝑞𝑞 − 𝑞𝑞obst

𝜌𝜌𝑖𝑖(𝑞𝑞,𝑞𝑞obst)
, 𝜌𝜌𝑖𝑖(𝑞𝑞,𝑞𝑞obst) ≤ 𝜌𝜌0

0, 𝜌𝜌𝑖𝑖(𝑞𝑞, 𝑞𝑞obst) > 𝜌𝜌0 (5)

The repulsive field defines a distance threshold 𝜌𝜌0
between the robot and obstacles. As the robot
approaches an obstacle, the repulsive force increases
sharply according to the gradient of this threshold. When
the robot’s distance from the obstacle drops below 𝜌𝜌0,
the repulsive force strengthens significantly. Conversely,
once the robot moves beyond 𝜌𝜌0, the repulsive force
diminishes, becoming negligible. The next section
introduces the total potential function.

2.3 Total potential function
The total potential function, 𝑈𝑈(𝑞𝑞), was determined by

summing the individually calculated attractive potential
function, 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞), and repulsive potential function,
𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑞𝑞).

𝑈𝑈(𝑞𝑞) = 𝑈𝑈𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) + � 
𝑛𝑛

𝑖𝑖=1

𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑞𝑞) (6)

In consequence, the resultant force can be
mathematically represented as:

�⃗�𝐹(𝑞𝑞) = �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎(𝑞𝑞) + � 
𝑛𝑛

𝑖𝑖=1

�⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖(𝑞𝑞) (7)

 In the next section, we discuss the limitations of the
traditional APF method, highlighting its key
shortcomings.

2.4 Identifying Limitations in the Traditional APF
Method

The APF method is computationally efficient,
responsive, and easy to implement, but it faces
challenges in specific path-planning scenarios where
targets become unreachable. A target is deemed
unreachable when a robot cannot approach it and instead
drifts farther away. This issue frequently occurs in
environments with obstacles near the target. As the robot
moves toward the goal, nearby obstacles amplify
repulsive forces, destabilizing path planning.

This phenomenon arises from a diminishing �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎
towards the target and a concurrently escalating �⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖
due to obstacles. When �⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 > �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎 , the resultant force
compels the robot away from the target, rendering it
inaccessible.

 4 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

Local optimization and local stability occur when the
combined attractive and repulsive forces acting on the
robot equate to zero or are collinearly. Under these
conditions, the robot becomes stationary or oscillates
within a localized area, unable to escape this force
equilibrium.

Two case studies are presented based on the
configurations illustrated in Fig. 2 and Fig. 3.

Case 1: When the robot, target, and obstacle are
aligned (Fig. 2), the robot is subjected to an attractive
force, propelling it towards the target. As the robot
approaches the obstacle, the attractive force diminishes
while the repulsive force increases. If these forces
equilibrate, the robot becomes stationary. Conversely, if
the attractive force dominates, the robot advances until
the repulsive force again counterbalances it, resulting in
oscillatory motion near the obstacle.

Fig 2.Forces acting on the robot in case 1

Case 2: In environments with multiple obstacles and

non-aligned paths (Figure 3), the robot may move
unpredictably. Moreover, when repulsive forces from
obstacles balance the attractive force toward the target,
the robot becomes stuck, unable to progress.

Fig 3.Forces acting on the robot in case 2

3 Fuzzy-Based Force Control for Improved
Performance in APF Path Planning

Building upon the established objective of navigation,
which is to reach a designated target while avoiding
obstacles. We define two key vectors, as is typical in
APF algorithms. In Fig. 4 the attractive force vector �⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎
is defined as a unit vector pointing directly from the

robot's current position toward the target. Conversely,
the repulsive force vector �⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 is a unit vector
originating from the closest obstacle in the environment
and pointing toward the robot.

Fig 4.Force analysis

We propose Eq. (8) as an alternative to Eq. (1) and Eq.
(2) for achieving a more smoothly and safely navigation
towards the target. In Eq. (8), �⃗�𝐹𝑤𝑤 represents the resultant
force, 𝜃𝜃 denotes the direction of the resultant force
vector, and 𝑤𝑤 represents the weight of the force vector.

�⃗�𝐹𝑤𝑤 = 𝑤𝑤�⃗�𝐹𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 + (1 − 𝑤𝑤)�⃗�𝐹𝑎𝑎𝑎𝑎𝑎𝑎 , 0 < 𝑤𝑤 < 1 (8)
𝜃𝜃 = ∡ 𝐹𝐹

Certain mobile robot locomotion models may be
constrained to avoid sharp turns. To achieve this
limitation, the maximum angular displacement per
control cycle is restricted to − 𝜋𝜋

4
< 𝜃𝜃𝑚𝑚𝑎𝑎𝑚𝑚 < 𝜋𝜋

4

Consequently, the robot's heading direction at the next
time step, denoted as 𝜃𝜃𝑟𝑟(𝑘𝑘+1), is calculated based on the
current heading direction, 𝜃𝜃𝑟𝑟(𝑘𝑘), using the Eq. (9):

𝜃𝜃𝑟𝑟(𝑘𝑘 + 1)

= 𝜃𝜃𝑟𝑟(𝑘𝑘) + �
𝑚𝑚𝑖𝑖𝑚𝑚 �𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘),

𝜋𝜋
4
� ,𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘) > 0

𝑚𝑚𝑚𝑚𝑥𝑥 �𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘),−
𝜋𝜋
4
� ,𝜃𝜃 − 𝜃𝜃𝑟𝑟(𝑘𝑘) < 0

(9)

�⃗�𝐹𝑤𝑤 is the resultant force and the magnitude 𝑤𝑤 of the
force vector is determined using the Eq. (10):

𝑤𝑤 = 𝐹𝐹𝑤𝑤(𝛼𝛼, |𝛥𝛥𝜃𝜃|) (10)

where:

|𝛥𝛥𝜃𝜃| (delta theta): absolute difference between the
target and obstacle directions with respect to the robot
(Fig. 4).

Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 5

𝛼𝛼 (alpha): ratio of the robot-to-obstacle distance,
𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑟𝑟 and the robot-to-target distance, 𝑑𝑑target.

To successfully navigate, the function should prioritize
obstacle avoidance by generating high output values
when the following conditions are met:

Angular Difference is Minimal: The absolute value of
the difference between the target and obstacle directions
relative to the robot |𝛥𝛥𝜃𝜃| is low. This indicates that the
target and obstacle lie in similar directions from the
robot's perspective.

Obstacle Proximity: The distance between the robot
and the obstacle 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜𝑎𝑎𝑎𝑎𝑜𝑜𝑜𝑜𝑟𝑟 is lower than the distance
between the robot and the target 𝑑𝑑𝑎𝑎𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑎𝑎. This signifies
that the obstacle poses a more immediate threat.

Under these circumstances, high output values from
the function will guide the robot's movement to prioritize
obstacle avoidance. Conversely, the function should
generate low output values when the aforementioned
conditions are not met. This signifies that the robot
should focus on reaching the target.

This study aims to develop a Fuzzy Inference System
(FIS) capable of autonomously acquiring fuzzy rules and
optimizing its internal parameters. This optimized FIS
will then be employed to model the function responsible
for collision-free robot navigation within a specified
environment.

To model the function 𝐹𝐹𝑤𝑤 in Eq. (10), a FIS is
constructed as depicted in Fig. 5. In this instance, a
Mamdani FIS is employed.

Fig 5.Mamdani Fuzzy Inference System (FIS) Architecture for
determining the weighting factor �⃗�𝐹𝑤𝑤. The FIS takes two inputs,
Angular Difference (∆𝜃𝜃) and Relative Distance Ratio (𝛼𝛼), and

outputs the weight 𝑤𝑤.

The employed fuzzy system utilizes two input
variables. The first input variable, denoted by ∆θ,
represents the absolute difference between the target
direction and the direction of the nearest obstacle

relative to the robot's orientation. The second input
variable α, is ratio of the robot-to-obstacle distance and
the robot-to-target distance.

The range of the first input variable is set to [0,𝜋𝜋/2].
This implies that the second fuzzy input, potentially
representing the difference between target and obstacle
directions, influences obstacle avoidance when this
difference is less than or equal to 𝜋𝜋/2 radians.

Similarly, the range of the second input variable is
defined as [0, 2]. This signifies that the fuzzy input,
likely representing obstacle distance, contributes to
obstacle avoidance behavior when the obstacle is located
at a distance less than or equal to twice the target
distance.

To minimize the number of fuzzy rules, a strategy
employing two membership functions (MFs) per input
variable is implemented. This approach directly reduces
the number of combinations required compared to
traditional methods. Furthermore, to accommodate input
values beyond the designated ranges, a combination of
Z-shaped and S-shaped curve MFs is utilized for
providing smooth and continuous transition, which is
essential for capturing the gradual changes in input data.
These functions ensure appropriate membership value
assignment even for outlying data points. The first input
variable is assigned MFs, as detailed in Fig. 6.

Fig 6.Membership Functions for the Input Variable ∆𝜃𝜃 defined

using Z-shaped and S-shaped curves for smooth and
continuous transition, respectively

And the second input variable is assigned membership
functions, as detailed in Fig. 7.

To achieve finer granularity in the output values, two
MFs can be added to the output layer. While additional
MFs can be employed for even greater granularity, this
approach necessitates the optimization of a larger set of
tuning parameters.

 6 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

Fig 7.Membership Functions for the Input Variable α (Relative
Distance Ratio). Two membership functions are used:” Close
Obstacle” and” Far Obstacle,” defined using Z-shaped and S-

shaped curves for smooth and continuous transition,
respectively.

Fig. 8 illustrates the addition of two MFs to the system's
output. While including more MFs can refine the
granularity of output values, it also leads to an increase
in the number of parameters requiring tuning. Notably,
the output MFs utilize Z-shaped and S-shaped curve to
extend membership values beyond the defined input
ranges. The tuning process subsequently optimizes the
parameter values associated with these output MFs.

Fig 8.Output Membership Functions for the Weighting Factor
w. Two membership functions are used:” Low Weight” and”

High Weight,” defined using Z-shaped and S-shaped curves for
smooth and continuous transition, respectively.

3.1 FIS Rule base Learning and Parameter
Optimization

A key challenge in deploying Fuzzy Inference Systems
(FIS) is the design and tuning of their rule base and
membership function parameters. Typically, this process
relies on expert knowledge or extensive trial-and-error.

However, for complex systems like robot navigation in
dynamic environments, manually crafting optimal fuzzy
rules and parameters can be exceedingly difficult and
time-consuming. Furthermore, in many real-world
applications, labeled training data for FIS design is often
scarce or unavailable. To address these challenges and
enable automated FIS design and optimization, we
employ a Genetic Algorithm (GA)-based learning
approach. In the absence of explicit input-output training
data, our GA leverages a custom-designed reward
function to evaluate and guide the evolution of candidate
FIS configurations. This reward function acts as a
surrogate for expert knowledge, encoding the desired
robot navigation behavior and allowing the GA to
autonomously discover effective FIS parameters. The
general process of FIS parameter setup with reward
function definition is illustrated in Fig. 9.

Our GA-based optimization process focuses on tuning
the rule base and membership function parameters of
both the input and output variables of the FIS.

Fig 9.Genetic Algorithm-based Fuzzy Inference System (FIS)

Parameter Optimization Process. The GA as optimizer
iteratively generates and evaluates candidate FIS parameter

sets using a custom-designed reward function based on
simulated robot navigation performance. The best-performing

FIS configurations are selected and evolved over generations to
find an optimized FIS.

Specifically, the GA evolves the parameters that define
the shapes and positions of the Z-shaped and S-shaped
membership functions shown in Fig. 6, Fig. 7, and Fig.
8. The GA’s primary task is to optimize the rule base
and numerical parameters of the membership functions
so that the fuzzy logic achieves robust robot navigation.
The reward function, 𝑅𝑅, is crucial for guiding the GA’s
search. It is designed to quantitatively assess the
navigation performance of a robot controlled by a given
FIS configuration across multiple simulated training
environments. These training environments are designed
to represent a range of typical navigation scenarios,
featuring different obstacle arrangements and target
locations. The reward function aggregates the
performance across these environments to provide a
holistic evaluation of each candidate FIS. For each
training environment 𝑖𝑖, the reward 𝑅𝑅𝑖𝑖 is calculated based

Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 7

on the robot’s navigation outcome. We define a positive
reward for successful navigation and a negative reward
(penalty) for failures. Successful navigation is defined as
reaching the target without colliding with any obstacle or
going out of bounds. In this case, the reward is set to the
total distance traveled by the robot. We aim to minimize
path length while achieving successful navigation, thus
rewarding efficiency. Failed navigation, on the other
hand, occurs if the robot collides with an obstacle or
fails to reach the target within a reasonable time frame or
distance. In case of failure, a fixed penalty of −100 is
assigned. This penalty is chosen to be significantly
negative to discourage failure modes and prioritize
successful navigation in the GA’s optimization process.
Mathematically, for each training environment 𝑖𝑖, the
reward 𝑅𝑅𝑖𝑖 is defined as:

The reward for the 𝑖𝑖-th environment, 𝑅𝑅𝑖𝑖, is defined as:
𝑅𝑅𝑖𝑖
= �

travelledDistance𝑖𝑖, if reachedTarget𝑖𝑖 = true and notSafe𝑖𝑖 = false,
−100, otherwise.

 (11)

The total reward 𝑅𝑅 across all 𝑚𝑚 environments is the
sum of individual rewards:

𝑅𝑅 = ∑ 𝑅𝑅𝑖𝑖𝑛𝑛
𝑖𝑖=1 .    (12)

The reward function can be expressed as:

𝑅𝑅 = ∑ �travelledDistance𝑖𝑖 ⋅ 𝕀𝕀reachedTarget𝑖𝑖∧¬notSafe𝑖𝑖
−𝑛𝑛

𝑖𝑖=1

100 ⋅
𝕀𝕀¬reachedTarget𝑖𝑖∨notSafe𝑖𝑖

�. (13)

where 𝕀𝕀condition is an indicator function that returns 1 if
the condition is true and 0 otherwise, ∧ denotes the
logical and operator, and ∨ denotes the logical OR
operator.

The indicator functions are defined as follows:
𝕀𝕀reachedTarget𝑖𝑖∧¬notSafe𝑖𝑖

 is 1 if the robot successfully
reaches the target without collisions, and 0 otherwise;
𝕀𝕀¬reachedTarget𝑖𝑖∨notSafe𝑖𝑖

 is 1 if the robot fails to reach the
target or encounters a collision, and 0 otherwise. If the
robot successfully navigates to the target, the reward is
the traveled distance travelled Distance𝑖𝑖 . If the robot
fails (due to collision or not reaching the target), the
reward is the fixed penalty 100. The total reward 𝑅𝑅 is
the sum of rewards across all environments.

The objective of the Genetic Algorithm is to maximize
this total reward function 𝑅𝑅 over generations by
iteratively refining the membership function parameters
of the FIS. Algorithm. 1 outlines the steps of our GA-
based FIS tuning process.

Algorithm. 1 Genetic Algorithm for Tuning Fuzzy Inference
System (FIS) Parameters for Robot Navigation.

Step 1: Define the Desired Navigation Behavior

• Specify the desired navigation behavior, here:
Obstacle Avoidance with Goal Reaching:

Step 2: Design the Custom Reward Function

• Develop a reward function 𝑅𝑅 that quantifies the
robot’s performance. The reward function can
be expressed as Eq. 11:

𝑅𝑅 = ��travelledDistance𝑖𝑖 ⋅ 𝕀𝕀reachedTarget𝑖𝑖∧¬notSafe𝑖𝑖 − 100
𝑛𝑛

𝑖𝑖=1

⋅ 𝕀𝕀¬reachedTarget𝑖𝑖∨notSafe𝑖𝑖�

Step 3: Select and Configure the Optimization
Algorithm

• Choose an optimization algorithm suitable
for tuning the Fuzzy Inference System
(FIS) parameters, such as: Genetic
Algorithm (GA).

• Define the parameters to be tuned,
including: Membership function
parameters (e.g., shapes, centers, widths).
Rule weights (if applicable).

• Configure the optimization algorithm
parameters (e.g., population size, number
of iterations, mutation rate for GA).

Step 4: Evaluate Candidate FIS Configurations in
Simulation

• Utilize a robot simulator to evaluate candidate
FIS configurations efficiently and safely.

Step 5: Crossover

• Create new FIS configurations (offspring) by
applying crossover operations to pairs of
selected parent configurations. Crossover
combines parameter sets from parents to
explore new regions of the parameter space.

 For each candidate FIS parameter set:

• Initialize the robot’s state (position and
orientation) in the simulation.

• Run the simulation under the control of the
candidate FIS for a defined duration or until
task completion.

• Collect relevant data during the simulation,
such as: Trajectory, errors, control signals, and
obstacle distances. Calculate the reward value 𝑅𝑅
using the reward function based on the
collected data.

Step 6: Iterate and Converge:

• The optimization algorithm iteratively refines

 8 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

the FIS parameters based on the reward values
obtained in Step 4. GA algorithm explores the
parameter space and maximize the reward
function 𝑅𝑅.

• Continue the iteration until: A satisfactory FIS
performance is achieved (i.e., the reward
function 𝑅𝑅 is maximized). The maximum
number of iterations is reached.

Step 7: Output

• Output the best-performing FIS configuration
found during the GA optimization process,
representing the tuned Fuzzy Logic Controller
for robot navigation.

The FIS learning algorithm adjusts the rule parameters
based on the reward function, resulting in enhanced
generalization capabilities. A 1 × 5 fuzzy rule base is
created, with each rule containing a textual description
summarizing the antecedent and consequent, the IF part
of the rule (a combination of fuzzy propositions using
linguistic variables and fuzzy operators), the THEN part
of the rule (specifying the resulting fuzzy output), and a
numerical weight associated with the rule (often set to 1)
that influences its overall contribution. Details of the
fuzzy rule base are presented in Table. 1.

Table 1. Rules for the FIS
Rule

Number Description Antecedent Consequent Weight

1

Low alpha and
high delta theta

implies low
weight

alpha is LOW
AND delta theta

is HIGH

w is LOW
(weight = 1) 1

2

Low alpha and
low delta theta
implies high

weight

alpha is LOW
AND delta theta

is LOW

w is HIGH
(weight = 1) 1

3
High delta theta

implies low
weight

delta theta is
HIGH

w is LOW
(weight = 1) 1

4

High alpha and
high delta theta

implies low
weight

alpha is HIGH
AND delta theta

is HIGH

w is LOW
(weight = 1) 1

5 Low alpha implies
low weight alpha is LOW w is LOW

(weight = 1) 1

3.2 Rules Reduction
To facilitate rule reduction and enhance the FIS's

efficiency, we provide a detailed description of the FIS
rules in Table 1, emphasizing their connection to the
anticipated behaviors of 𝐹𝐹𝑤𝑤 represented in Eq. (10). The
FIS employs five initial rules to evaluate the significance
of obstacles during robot navigation. We now analyze
the relationships between these rules and their impact on
the overall behavior to justify the rule reduction.

Rules 1 and 4: Rules 1 and 4 both contribute to
assigning a low significance weight to obstacles when
they are not directly in the robot's path towards the
target, characterized by a high antecedent value for
"obstacle location" (𝛥𝛥𝜃𝜃 is HIGH). Specifically, Rule 1
considers scenarios where such off-path obstacles are
also relatively close (low "obstacle distance" or 𝛼𝛼 is
LOW), while Rule 4 addresses cases where they are
further away (high "obstacle distance" or 𝛼𝛼 is HIGH).
Since Rule 3 also assigns a low weight based solely on
"obstacle location" being high (obstacle not in front),
potentially encompassing the conditions of Rules 1 and
4, one might initially deem Rules 1 and 4 redundant.
However, a more nuanced perspective acknowledges
potential edge cases. For instance, in highly cluttered
environments, closer off-path obstacles might arguably
warrant slightly more consideration than distant ones,
and Rules 1 and 4 could theoretically offer this finer
granularity.

Despite these potential edge cases, we justify the
removal of Rules 1 and 4 based on the following
considerations: The primary factor determining obstacle
weight should be whether the obstacle is in the robot's
direct path 𝛥𝛥𝜃𝜃 being "HIGH" strongly indicates the
obstacle is not an immediate threat to the robot's forward
progress, making the influence of obstacle distance 𝛼𝛼
secondary in these off-path scenarios. Furthermore,
retaining Rules 1 and 4 introduces unnecessary
complexity to the FIS without a demonstrably significant
improvement in core navigation performance, especially
considering our objectives of robust obstacle avoidance
and escaping local minima. The simplified FIS with
fewer rules is computationally more efficient and easier
to interpret. Empirical validation, as presented in the
Experimental Evaluation and Results section, supports
the effectiveness of the reduced rule set, indicating that
the simplification is justified in practice. Therefore,
while acknowledging the subtle nuances Rules 1 and 4
could provide, their removal for simplification and
efficiency is well-founded.

Rule 5: Rule 5 is designed to assign a low weight to
obstacles that are in close proximity to the robot
("obstacle distance" or 𝛼𝛼 is LOW). However, this rule
presents a potential conflict with Rule 2, which assigns a
high weight to nearby obstacles that are also positioned
directly in the robot's path ("obstacle distance" is LOW
AND "obstacle location" or 𝛥𝛥𝜃𝜃 is LOW). In edge cases
where an obstacle is very close but perhaps not perfectly
aligned with the robot's intended direction, both Rule 2
and Rule 5 could technically become active. While Rule
5 might subtly reduce the overall weight in such
borderline situations, the "high weight" output from Rule
2, designed to trigger a strong avoidance response for
immediate threats, would inherently dominate the final

Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 9

FIS output. Therefore, the contribution of Rule 5
becomes inconsequential in practice. Consequently, Rule
5 can also be removed without significantly altering the
overall behavior, as the dominant Rule 2 effectively
addresses scenarios where nearby obstacles pose a direct
threat. To achieve a more concise representation and
improve computational efficiency, we eliminated these
redundant rules. The modified FIS rules are detailed in
Table 2.

Table 2. Modified rules for the FIS

Rule
Number Description Antecedent Consequent

1 Low alpha and low
delta theta

alpha is low & delta
theta is low

w is high
(weight is 1)

2 High delta theta delta theta is high w is low
(weight is 1)

 The modified output surface of the FIS is depicted in
Fig. 10. To further assess the practicality of our
approach, the next section provides a comprehensive
analysis of its computational complexity.

Fig 10. Control surface of modifies FIS

3.3 Computational Complexity Analysis
The practicality of a navigation algorithm for mobile

robots is significantly influenced by its computational
demands, particularly for real-time applications. To
strengthen the argument for the feasibility of our
proposed method, this section provides a detailed
analysis of its computational complexity, differentiating
between offline and online phases and comparing it with
relevant alternative approaches.

 Offline Phase: Genetic Algorithm Optimization Our
framework employs a Genetic Algorithm (GA) to
optimize the Fuzzy Logic Controller's (FLC's)
membership functions and rule base. It is crucial to
acknowledge that GA optimization is inherently
computationally intensive. However, this computational
burden is strategically confined to an offline design
phase. The computational complexity of the GA
optimization phase can be approximated as:

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑖𝑖𝐶𝐶𝑦𝑦_𝐶𝐶𝑜𝑜𝑜𝑜𝐶𝐶𝑖𝑖𝑚𝑚𝐶𝐶 = 𝑂𝑂(𝑃𝑃 .𝐺𝐺 .𝐶𝐶𝑓𝑓) (14)

where:
 𝑃𝑃 is the population size of the GA, representing the
number of candidate solutions evaluated in each
generation. 𝐺𝐺 is the number of generations, indicating
the iterative process of evolution and refinement of
solutions. 𝐶𝐶𝑓𝑓 represents the computational cost of
evaluating the fitness or reward function for each
candidate solution. This cost primarily involves
simulating the controller's performance within a
representative environment. This is because the outcome
of this phase is a pre-optimized FLC that is subsequently
deployed in a real-time environment where online
computational efficiency is paramount. The offline
optimization allows for a more thorough exploration of
the design space, leading to a potentially more robust
and effective controller without burdening the robot's
real-time processing capabilities.

Online Phase: Real-Time FLC Execution The online
operation of the Fuzzy Logic Controller, which is
executed in real-time on the mobile robot, is designed
for computational efficiency. The online phase
comprises a well-defined sequence of steps:
 1. Fuzzification: This step involves converting crisp
sensor inputs (e.g., distance measurements) into fuzzy
linguistic variables based on predefined membership
functions. The computational cost of fuzzification is
typically linear with respect to the number of inputs and
membership functions, which are usually small and fixed
2. Rule Evaluation (Inference): The core of the FLC's
online computation lies in rule evaluation. Given a finite
and fixed set of fuzzy rules (in our case, a reduced set as
shown in Table 2), the inference engine determines the
degree to which each rule's antecedent is satisfied by the
fuzzified inputs. With 𝑚𝑚 representing the number of
fuzzy rules, and assuming a fixed number of antecedents
per rule, the complexity of rule evaluation is
approximately proportional to the number of rules.
3. Defuzzification: The final step is defuzzification,
where the fuzzy output values (representing control
actions) are converted back into precise, crisp control
commands that can be directly applied to the robot's
actuators. Common defuzzification methods, such as the
centroid method, have a computational cost that is also
relatively low and constant per control cycle. Therefore,
since the number of fuzzy rules (𝑚𝑚 = 2) in our design is
deliberately kept small and fixed, the per-cycle
computational complexity of the online FLC operation
can be approximated as:

𝐶𝐶𝐶𝐶𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥𝑖𝑖𝐶𝐶𝑦𝑦_𝐶𝐶𝑚𝑚𝐶𝐶𝑖𝑖𝑚𝑚𝐶𝐶 = 𝑂𝑂(𝑚𝑚) (15)

This linear complexity with respect to the (small and
constant) number of rules signifies a very low per-cycle
computational cost. This characteristic is highly

 10 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

advantageous for real-time execution, especially on
resource-constrained mobile robot platforms where
processing power and energy are limited.

 Comparison with Alternative Methods
To further contextualize the computational efficiency of
our proposed method, it is beneficial to compare its
online complexity with alternative navigation
approaches, such as Artificial Potential Field (APF)
variations:

• Harmonic Artificial Potential Field (HAPF)
Controller [45]:
When implemented using standard iterative
solvers like Gauss-Seidel, HAPF exhibits a
computational complexity that is often
approximated as O (n* I), where 𝑚𝑚 is the
number of discretized grid cells representing
the environment, and I is the number of
iterations required for the solver to converge to
a stable potential field. While advanced
methods like multigrid solvers can improve this
complexity to O(n) in many practical scenarios,
the online computational cost remains
dependent on the environment discretization
(𝑚𝑚), which can be substantial for high-
resolution maps.

• Pseudo-Bacterial Potential Field (PBPF)
Controller [46]:
PBPF, as a bio-inspired approach, simulates a
swarm of B pseudo bacteria (agents) to explore
and navigate the potential field. For each
pseudo bacterium, the algorithm typically
computes the local potential (or gradient) across
the environment. Assuming that each
bacterium's evaluation over 𝑚𝑚 potential
components (e.g., obstacles, goal) is
independent, the cost per iteration becomes
𝑂𝑂(𝐵𝐵 .𝑚𝑚). If the algorithm requires T iterations
(or time steps) to converge toward a satisfactory
navigation path, the overall worst-case
computational complexity can be estimated as
𝑂𝑂(𝑇𝑇 .𝐵𝐵 .𝑚𝑚). This complexity is influenced by
the number of simulated bacteria (𝐵𝐵), the
environment complexity (𝑚𝑚), and the
convergence time (𝑇𝑇), potentially leading to
higher online computational demands compared
to our FLC-based approach.

Practical Implications and Advantages
 The computational complexity analysis highlights
several practical implications and advantages of our
proposed hybrid navigation method:

• Real-Time Efficiency: The online evaluation
of a fixed and small set of fuzzy rules in our
FLC ensures quick and reliable performance,
making it highly suitable for real-time control

loops in mobile robotics. This efficiency is
crucial for responsive navigation and obstacle
avoidance, even on embedded platforms with
limited computational capacity.

• Suitability for Resource-Constrained
Environments:
By strategically offloading the computationally
intensive GA optimization to an offline design
phase, our method becomes particularly well-
suited for mobile robots operating in resource-
constrained environments where processing
power and energy efficiency are critical design
considerations.

• Robustness vs. Complexity Trade-off: While
alternative online-adaptive methods might offer
flexibility in complex environments, their
increased online computational overhead can
introduce delays and uncertainties in control
execution. Our approach prioritizes robustness
in safety-critical tasks by maintaining a
consistently low and predictable online
computational demand, ensuring timely
responses to sensor inputs and environmental
changes.

In conclusion, the proposed method strategically
decouples the computationally intensive GA
optimization (performed offline) from the lightweight
real-time fuzzy controller operation. This design choice
enhances both the practical feasibility and the real-time
response performance of the navigation system, making
it a compelling solution for mobile robot navigation,
especially when compared to alternative methods that
may impose higher online computational requirements.

4 Experimental Evaluation and Results

To rigorously validate the performance of our
proposed Evolutionary Fuzzy Force Control (EFFC)
method, we conducted extensive experiments in both
simulation and real-world environments. Robotics
simulation software is an invaluable tool for algorithm
development, enabling rapid prototyping, testing, and
debugging of robot control strategies in a controlled
virtual setting before physical deployment. For our
simulation experiments, we utilized the Robot Operating
System (ROS) framework in conjunction with the
Gazebo robot simulator. The simulated robot platform
was the widely used TurtleBot 3 Burger (TB3), chosen
for its realistic dynamics and ROS compatibility.

For the Genetic Algorithm (GA) optimization of the
Fuzzy Inference System (FIS), we configured a
population size of 100 individuals to ensure sufficient
exploration of the parameter search space. The GA was
run for a maximum of 25 generations, a number
empirically determined to allow for convergence while
maintaining computational feasibility. To evaluate the
fitness of each FIS configuration within the GA, we

Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 11

employed the custom-designed reward function
(described in Section 3.1) and simulated robot
navigation in two distinct training environments. Each
navigation task within the GA fitness evaluation
consisted of 10 simulation iterations, with the robot
commanded to move at a constant linear velocity of 0.1
𝑚𝑚
𝑜𝑜

 . This relatively low linear velocity was chosen to
mimic typical indoor robot operation scenarios, such as
navigation in office or residential environments, where
safety and controlled movements are prioritized. The GA
optimization process resulted in tuned membership
functions for both input and output variables of the FIS.
Fig. 10, Fig. 11, and Fig. 12 visually depict these
optimized membership functions for the first input (∆𝜃𝜃),
the second input (𝛼𝛼), and the output (𝑤𝑤), respectively.
These figures illustrate the refined fuzzy sets learned by
the GA to effectively map input conditions to the desired
weighting factor for obstacle avoidance.

Fig 11. The first input membership functions after ending

tuning process

Fig 12. The second input membership functions after ending

tuning process.

Fig 13. The output membership functions after ending tuning

process.

The training environments were configured with
specific initial positions for the obstacle, target, and
robot. In all training environments, the robot's initial
heading was set to π/4 radians and the target was located
at (3, 3), as illustrated in Fig. 14. To evaluate the robot's
navigation capabilities under varying conditions, two
distinct training tasks were employed. These tasks
differed solely in the placement of the obstacle, allowing
the robot to learn navigation strategies for obstacle-
avoidance scenario during its movement towards the
target location.

Fig 14. Spatial configuration of the robot, obstacle and target

for training process

Fig 15. Robot's trajectory in the real-world application scenario

from Fig. 17

 12 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

Fig 16. Control effort signal (angular velocity) in the real-

world application scenario from Fig. 17

The performance of each FIS in the population is
evaluated using a reward function that simulates robot
navigation in training environments. Each navigation
task is executed for 10 iterations with a constant linear
velocity of 0.1 m/s for the TB3.

Following the completion of the training process, Fig.
14 depicts the robot's trajectory, while Fig. 16 illustrates
the control effort signal (angular velocity) exerted.

To evaluate the proposed method under realistic
conditions, we utilized a physical mobile robot, TB3.
The TB3 is a commercially available, differential-drive
mobile robot platform widely used in robotics research
and education[44]. It is known for its modular design,
affordability, and compatibility with the ROS. The TB3
comes in various configurations, with the most common
being the Burger variant (featuring two omni-directional
wheels for maneuverability in indoor environments). It
is equipped with a suit of sensors for perception,
including encoders for odometry, an inertial
measurement unit (IMU) for orientation, and optionally
integrated depth cameras or LiDAR for obstacle
detection and mapping. The TB3's open-source software
framework and extensive documentation resources make
it a popular choice for developing and testing algorithms
in robotics research areas such as navigation,
Simultaneous Localization and Mapping (SLAM), and
robot manipulation. To evaluate the proposed algorithm,
we employed a real environment (Fig. 17) representative
of typical office or home settings, reflecting real-world
application scenarios. The robot's trajectory and
corresponding control-effort signal are visualized in Fig.
18 and 19, respectively. A supplementary video
illustrating the test procedure is available online at
https://aparat.com/v/myvqzu0 .

Fig 17.Real mobile robot (TB3) and environment

Fig 18.Robot's trajectory

Fig 19.Control effort signal (angular velocity)

A comparative analysis of the proposed Evolutionary
Fuzzy Force Control (EFFC) algorithm with the
Harmonic Artificial Potential Field (HAPF) [45] and the
Pseudo-Bacterial Potential Field (PBPF) [46] is
presented in Table 3 for two environments in Fig. 20.
The results demonstrate that proposed algorithm exhibits
superior real-time performance and robust path planning
capabilities. Ten independent runs were conducted for
each method in both Environment (a) and Environment
(b). The resulting data are visualized in Fig. 21 and 22,
respectively.

https://aparat.com/v/myvqzu0

Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 13

(a) (b)

Fig 20. Two distinct environments for comparative analysis.
(a) depicts a non-convex configuration, while (b) illustrates a

more complex scenario

Fig 21. The results of ten independent runs were obtained for

each method for environment (a) from Fig. 20

Fig 22. The results of ten independent runs were obtained for
each method for environment (b) from Fig. 20

Table 3.The performance of various methods was evaluated
over 10 independent runs.

Environments Statistics

Proposed
Evolutionary
Fuzzy Force

Control

Harmonic
Artificial

Potential Field

Pseudo-
Bacterial

Potential Field

 Time
(s)

Length
(m)

Time
(s)

Length
(m)

Time
(s)

Length
(m)

(a) Average 11.5 2.3 15.5 3.1 13.1 2.6

(b) Average 12.2 2.4 14.3 2.8 13.5 2.7

5 Conclusion

In this work, we demonstrated a successful solution for
mobile robot navigation in obstacle-filled environments.
The proposed method combines the strengths of multiple
techniques leverages the strengths of Artificial potential
fields for real-time obstacle avoidance, Fuzzy logic
control for efficient path planning, allowing for
adaptation to imprecise sensor data and Machine
learning (genetic algorithm) to optimize the fuzzy logic
system for different environments.

Experimental results from a comparative analysis
showed significant improvement over traditional
potential field methods (HAPF and PBPF). Furthermore,
real-time implementation on a mobile robot platform
validated the effectiveness of the approach in practical
scenarios. This proposed method offers a robust and
adaptable navigation strategy for mobile robot platforms
capable of implementing APF, paving the way for its
wider application in various environments.

Future work could explore incorporating additional
navigation subtasks (e.g., wall following) and adapting
to other robot platforms for complex environments.
Additionally, Tuning the FIS parameters also requires
extensive implementation efforts. To expedite this
process, incorporating human operator decision data as
training data can be a promising direction for future
research.

Conflict of Interest
The authors declare no conflict of interest.

Informed Consent Statement
Not applicable.

References
[1] Z. E. Kanoon, A. S. Al-Araji, and M. N.

Abdullah, "Enhancement of Cell
Decomposition Path-Planning Algorithm for
Autonomous Mobile Robot Based on an
Intelligent Hybrid Optimization Method,"
International Journal of Intelligent Engineering
& Systems, vol. 15, no. 3, 2022.

[2] O. A. Salama, M. E. Eltaib, H. A. Mohamed,
and O. Salah, "RCD: radial cell decomposition
algorithm for mobile robot path planning,"
IEEE Access, vol. 9, pp. 149982-149992, 2021.

[3] G. E. Jan, C. Luo, C.-Y. Yang, and H.-C.
Hsieh, "A survey of cell decomposition-based
path planning," in 2023 4th International
Conference on Artificial Intelligence, Robotics
and Control (AIRC), 2023: IEEE, pp. 83-87.

[4] S. K. Debnath et al., "Different cell
decomposition path planning methods for

 14 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

unmanned air vehicles-A review," in
Proceedings of the 11th National Technical
Seminar on Unmanned System Technology
2019: NUSYS'19, 2021: Springer, pp. 99-111.

[5] J. D. a. Zhengtian Wu a, Baoping Jiang a,
Hamid Reza Karimi b, "Robot path planning
based on artificial potential field with
deterministic annealing," ISA Transactions,
2023.

[6] G. Chen, N. Luo, D. Liu, Z. Zhao, and C.
Liang, "Path planning for manipulators based
on an improved probabilistic roadmap method,"
Robotics and Computer-Integrated
Manufacturing, vol. 72, p. 102196, 2021.

[7] S. Kumar and A. Sikander, "A modified
probabilistic roadmap algorithm for efficient
mobile robot path planning," Engineering
Optimization, vol. 55, no. 9, pp. 1616-1634,
2023.

[8] A. A. Ravankar, A. Ravankar, T. Emaru, and Y.
Kobayashi, "HPPRM: hybrid potential based
probabilistic roadmap algorithm for improved
dynamic path planning of mobile robots," Ieee
Access, vol. 8, pp. 221743-221766, 2020.

[9] L. Liu, X. Wang, X. Yang, H. Liu, J. Li, and P.
Wang, "Path planning techniques for mobile
robots: Review and prospect," Expert Systems
with Applications, vol. 227, p. 120254, 2023.

[10] J. Luo, Z.-X. Wang, and K.-L. Pan, "Reliable
path planning algorithm based on improved
artificial potential field method," IEEE Access,
vol. 10, pp. 108276-108284, 2022.

[11] R. Szczepanski, A. Bereit, and T. Tarczewski,
"Efficient local path planning algorithm using
artificial potential field supported by augmented
reality," Energies, vol. 14, no. 20, p. 6642,
2021.

[12] R. Szczepanski, T. Tarczewski, and K.
Erwinski, "Energy efficient local path planning
algorithm based on predictive artificial potential
field," IEEE Access, vol. 10, pp. 39729-39742,
2022.

[13] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, and
Z. Cao, "Review of autonomous path planning
algorithms for mobile robots," Drones, vol. 7,
no. 3, p. 211, 2023.

[14] R. Sarkar, D. Barman, and N. Chowdhury,
"Domain knowledge based genetic algorithms
for mobile robot path planning having single
and multiple targets," Journal of King Saud
University-Computer and Information Sciences,
vol. 34, no. 7, pp. 4269-4283, 2022.

[15] K. P. Cheng, R. E. Mohan, N. H. K. Nhan, and
A. V. Le, "Multi-objective genetic algorithm-
based autonomous path planning for hinged-

tetro reconfigurable tiling robot," IEEE Access,
vol. 8, pp. 121267-121284, 2020.

[16] K. Hao, J. Zhao, Z. Li, Y. Liu, and L. Zhao,
"Dynamic path planning of a three-dimensional
underwater AUV based on an adaptive genetic
algorithm," Ocean Engineering, vol. 263, p.
112421, 2022.

[17] C. Ntakolia, S. Moustakidis, and A. Siouras,
"Autonomous path planning with obstacle
avoidance for smart assistive systems," Expert
Systems with Applications, vol. 213, p. 119049,
2023.

[18] J. Wang, Z. Xu, X. Zheng, and Z. Liu, "A fuzzy
logic path planning algorithm based on
geometric landmarks and kinetic constraints,"
Information Technology and Control, vol. 51,
no. 3, pp. 499-514, 2022.

[19] Y. Lei, Y. Wang, S. Wu, X. Gu, and X. Qin, "A
fuzzy logic-based adaptive dynamic window
approach for path planning of automated
driving mining truck," in 2021 IEEE
International Conference on Mechatronics
(ICM), 2021: IEEE, pp. 1-6.

[20] M. Yao, H. Deng, X. Feng, P. Li, Y. Li, and H.
Liu, "Improved dynamic windows approach
based on energy consumption management and
fuzzy logic control for local path planning of
mobile robots," Computers & Industrial
Engineering, vol. 187, p. 109767, 2024.

[21] I. Sung, B. Choi, and P. Nielsen, "On the
training of a neural network for online path
planning with offline path planning
algorithms," International Journal of
Information Management, vol. 57, p. 102142,
2021.

[22] M. V. J. Muthugala, S. B. P. Samarakoon, and
M. R. Elara, "Toward energy-efficient online
Complete Coverage Path Planning of a ship hull
maintenance robot based on Glasius Bio-
inspired Neural Network," Expert systems with
applications, vol. 187, p. 115940, 2022.

[23] Z. Zhao, S. Liu, J. Wei, and F. Qin, "Improved
biological neural network approach for path
planning of differential drive agricultural robots
with arbitrary shape," Computers and
Electronics in Agriculture, vol. 216, p. 108525,
2024.

[24] Y. Liu, Z. Zheng, F. Qin, X. Zhang, and H.
Yao, "A residual convolutional neural network
based approach for real-time path planning,"
Knowledge-Based Systems, vol. 242, p. 108400,
2022.

[25] M. Chen and D. Zhu, "Optimal time-consuming
path planning for autonomous underwater
vehicles based on a dynamic neural network
model in ocean current environments," IEEE

Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025 15

Transactions on Vehicular Technology, vol. 69,
no. 12, pp. 14401-14412, 2020.

[26] A. Abdi, M. H. Ranjbar, and J. H. Park,
"Computer vision-based path planning for robot
arms in three-dimensional workspaces using Q-
learning and neural networks," Sensors, vol. 22,
no. 5, p. 1697, 2022.

[27] F. Li, X. Fan, and Z. Hou, "A firefly algorithm
with self-adaptive population size for global
path planning of mobile robot," IEEE Access,
vol. 8, pp. 168951-168964, 2020.

[28] G. Xu, T.-W. Zhang, Q. Lai, J. Pan, B. Fu, and
X. Zhao, "A new path planning method of
mobile robot based on adaptive dynamic firefly
algorithm," Modern Physics Letters B, vol. 34,
no. 29, p. 2050322, 2020.

[29] M. Morin, I. Abi-Zeid, and C.-G. Quimper,
"Ant colony optimization for path planning in
search and rescue operations," European
Journal of Operational Research, vol. 305, no.
1, pp. 53-63, 2023.

[30] M. M. Gangadharan and A. Salgaonkar, "Ant
colony optimization and firefly algorithms for
robotic motion planning in dynamic
environments," Engineering Reports, vol. 2, no.
3, p. e12132, 2020.

[31] C. Miao, G. Chen, C. Yan, and Y. Wu, "Path
planning optimization of indoor mobile robot
based on adaptive ant colony algorithm,"
Computers & Industrial Engineering, vol. 156,
p. 107230, 2021.

[32] M. Wang, C. Zhu, F. Wang, T. Li, and X.
Zhang, "Multi-factor of path planning based on
an ant colony optimization algorithm," Annals
of GIS, vol. 26, no. 2, pp. 101-112, 2020.

[33] K. Sharma, S. Singh, and R. Doriya,
"Optimized cuckoo search algorithm using
tournament selection function for robot path
planning," International Journal of Advanced
Robotic Systems, vol. 18, no. 3, p.
1729881421996136, 2021.

[34] W. Wang, Q. Tao, Y. Cao, X. Wang, and X.
Zhang, "Robot time-optimal trajectory planning
based on improved cuckoo search algorithm,"
IEEE access, vol. 8, pp. 86923-86933, 2020.

[35] H. Kundra, W. Khan, M. Malik, K. P. Rane, R.
Neware, and V. Jain, "Quantum-inspired firefly
algorithm integrated with cuckoo search for
optimal path planning," International Journal
of Modern Physics C, vol. 33, no. 02, p.
2250018, 2022.

[36] J. A. Abdulsaheb and D. J. Kadhim, "Classical
and heuristic approaches for mobile robot path
planning: A survey," Robotics, vol. 12, no. 4, p.
93, 2023.

[37] Q. Jia and X. Wang, "An improved potential
field method for path planning," in 2010
Chinese control and decision conference, 2010:
IEEE, pp. 2265-2270.

[38] G. Li, A. Yamashita, H. Asama, and Y.
Tamura, "An efficient improved artificial
potential field based regression search method
for robot path planning," in 2012 IEEE
International Conference on Mechatronics and
Automation, 2012: IEEE, pp. 1227-1232.

[39] U. Orozco-Rosas, O. Montiel, and R.
Sepúlveda, "Mobile robot path planning using
membrane evolutionary artificial potential
field," Applied soft computing, vol. 77, pp. 236-
251, 2019.

[40] A. A. A. Rizqi, A. I. Cahyadi, and T. B. Adji,
"Path planning and formation control via
potential function for uav quadrotor," in 2014
International Conference on Advanced
Robotics and Intelligent Systems (ARIS), 2014:
IEEE, pp. 165-170.

[41] F. Matoui, B. Boussaid, and M. N. Abdelkrim,
"Local minimum solution for the potential field
method in multiple robot motion planning
task," 2015 16th International Conference on
Sciences and Techniques of Automatic Control
and Computer Engineering (STA), pp. 452-457,
2015.

[42] F. Janabi-Sharifi and D. Vinke, "Integration of
the artificial potential field approach with
simulated annealing for robot path planning," in
Proceedings of 8th IEEE international
symposium on intelligent control, 1993: IEEE,
pp. 536-541.

[43] Y. Shin and E. Kim, "Hybrid path planning
using positioning risk and artificial potential
fields," Aerospace Science and Technology,
vol. 112, p. 106640, 2021.

[44] R. Amsters and P. Slaets, "Turtlebot 3 as a
robotics education platform," in Robotics in
Education: Current Research and Innovations
10, 2020: Springer, pp. 170-181.

[45] H. J. S. Feder and J.-J. Slotine, "Real-time path
planning using harmonic potentials in dynamic
environments," in Proceedings of International
Conference on Robotics and Automation, 1997,
vol. 1: IEEE, pp. 874-881.

[46] U. Orozco-Rosas, O. Montiel, and R.
Sepúlveda, "Pseudo-bacterial potential field
based path planner for autonomous mobile
robot navigation," International Journal of
Advanced Robotic Systems, vol. 12, no. 7, p. 81,
2015.

 16 Iranian Journal of Electrical & Electronic Engineering, Vol. 21, No. 04, December 2025

Majid Golkhatab was born in
1979 in Tehran, Tehran province,
Iran. He received B.S and M.S
degrees in Electronics and
Mechatronics, respectively.
Currently, he is a Ph.D. candidate
in Electrical. Engineering Control
theory at Imam Khomeini

International University (IKIU), Qazvin, Iran. His
research interest includes Optimal Control, Machine
Learning, Optimization, Robotics, Mechatronics, Fuzzy
Logic and Neural Networks.

Aref Shahmansoorian received the
B.S and M.S degrees on electrical
engineering from Tehran
University and received Ph.D. in
Control theory from K. N. Toosi
University of Technology (KNTU),
Tehran, in 2005. Currently, he is
with the group of electrical
engineering, Imam Khomeini

International University (IKIU), Qazvin, as an assistant
professor. His research interest includes Nonlinear
Control Systems, Optimal Control, Robust Control,
Machine Learning and Multivariable Control.

Mohsen Davoudi received his Ph.D.
in Electrical Engineering from
Polytechnic University of Milan
(Politecnico di Milano), Milan,
Italy, in 2011. Currently he is an
assistant professor at Imam
Khomeini International University
(IKIU), Qazvin, Iran. His research

interest includes Fuzzy Logic, Neural Networks,
Computational Intelligence, and Expert systems

	1 0F(Introduction
	2 Artificial Potential Field
	2.1 Attractive potential functions
	2.2 Repulsive potential function
	2.3 Total potential function
	2.4 Identifying Limitations in the Traditional APF Method

	3 Fuzzy-Based Force Control for Improved Performance in APF Path Planning
	3.1 FIS Rule base Learning and Parameter Optimization
	3.2 Rules Reduction
	3.3 Computational Complexity Analysis
	Comparison with Alternative Methods

	4 Experimental Evaluation and Results
	5 Conclusion
	Conflict of Interest
	Informed Consent Statement
	References

